The joint effects of mixture exposure to multiple meteorological factors on step count: A panel study in China

相对湿度 百分位 风速 环境科学 分布滞后 滞后 分位数 气候变化 广义加性模型 气候学 大气科学 气象学 统计 数学 地理 计算机科学 计算机网络 生态学 地质学 生物
作者
Ziqiang Lin,Mengmeng Wang,Junrong Ma,Yingyin Liu,Wayne R. Lawrence,Shirui Chen,Wangjian Zhang,Jianxiong Hu,Guanhao He,Tao Liu,Ming Zhang,Wenjun Ma
出处
期刊:Environmental Pollution [Elsevier]
卷期号:346: 123469-123469
标识
DOI:10.1016/j.envpol.2024.123469
摘要

The public health burden of increasing extreme weather events has been well documented. However, the influence of meteorological factors on physical activity remains limited. Existing mixture effect methods cannot handle cumulative lag effects. Therefore, we developed quantile g-computation Distributed lag non-linear model (QG-DLNM) by embedding a DLNM into quantile g-computation to allow for the concurrent consideration of both cumulated lag effects and mixture effects. We gathered repeated measurement data from Henan Province in China to investigate both the individual impact of meteorological factor on step counts using a DLNM, and the joint effect using the QG-DLNM. We projected future step counts linked to changes in temperature and relative humidity driven by climate change under three scenarios from the sixth phase of the Coupled Model Intercomparison Project. Our findings indicate there are inversed U-shaped associations for temperature, wind speed, and mixture exposure with step counts, peaking at 11.6 °C in temperature, 2.7 m/s in wind speed, and 30th percentile in mixture exposure. However, there are negative associations between relative humidity and rainfall with step counts. Additionally, relative humidity possesses the highest weights in the joint effect (49% contribution). Compared to 2022s, future step counts are projected to decrease due to temperature changes, while increase due to relative humidity changes. However, when considering both future temperature and humidity changes driven by climate change, the projections indicate a decrease in step counts. Our findings may suggest Chinese physical activity will be negatively influenced by global warming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
2秒前
Chaha应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
纯真忆安发布了新的文献求助10
5秒前
6秒前
有点儿微胖完成签到,获得积分10
7秒前
细心天德完成签到,获得积分10
7秒前
7秒前
开放幻丝发布了新的文献求助10
7秒前
ntrip完成签到,获得积分10
8秒前
9秒前
传奇3应助ldgsd采纳,获得10
9秒前
橙酒发布了新的文献求助10
10秒前
普外科老白完成签到,获得积分10
13秒前
欣慰立轩发布了新的文献求助10
13秒前
浮游应助彤彤采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282