SonarNet: Hybrid CNN-Transformer-HOG Framework and Multifeature Fusion Mechanism for Forward-Looking Sonar Image Segmentation

计算机科学 人工智能 图像分割 计算机视觉 分割 模式识别(心理学) 机制(生物学) 变压器 电压 工程类 哲学 电气工程 认识论
作者
Ju He,Jianfeng Chen,Hu Xu,Yang Yu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2024.3368659
摘要

Forward-looking sonar (FLS) image segmentation plays a significant role in ocean engineering. However, the existing image segmentation algorithms present difficulties in extracting features from FLS images with weak semantic information, complex backgrounds and strong environmental noises. Convolutional neural networks (CNNs) have demonstrated remarkable capabilities in semantic segmentation tasks, but the locality of convolution limits the ability to extract global context and long-range semantic information. The effective extraction of global contextual information is indispensable for achieving accurate segmentation results in sonar image processing. In this paper, we propose a novel semantic segmentation architecture for forward-looking sonar images called SonarNet. SonarNet is based on a hybrid CNN-Transformer-HOG framework and comprises four modules. 1) The Global-Local Encoder can extract both global and detailed feature information of the underwater target; 2) the Network Decoder converts the high-semantic feature map into a pixel-level classification; 3) as a bridge between dual encoders, the Global-Local Fusion Module ensures semantic consistency between different encoders; 4) the HOG Feature Encoder and Fusion can extract traditional manual features and perform feature alignment. We conducted comprehensive ablation experiments to validate the efficacy of the designed modules. Finally, experimentation revealed that SonarNet significantly outperforms other CNN-based and CNN-Transformer FLS image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
An发布了新的文献求助10
1秒前
1秒前
害羞的雪萍完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
安详鸿完成签到 ,获得积分10
3秒前
3秒前
ASHDSN完成签到,获得积分10
3秒前
哒哒发布了新的文献求助10
3秒前
3秒前
不爱科研发布了新的文献求助10
3秒前
Andychen完成签到,获得积分10
4秒前
5秒前
5秒前
ruochenzu发布了新的文献求助10
6秒前
香蕉觅云应助ylyao采纳,获得10
6秒前
6秒前
QZZ发布了新的文献求助10
6秒前
6秒前
6秒前
yyymmma发布了新的文献求助10
6秒前
lalala应助zaphkiel采纳,获得10
6秒前
7秒前
Tess发布了新的文献求助10
7秒前
7秒前
赘婿应助邻羟基对苯二酚采纳,获得10
8秒前
龙骑士25发布了新的文献求助10
8秒前
石破天惊完成签到,获得积分10
9秒前
大海发布了新的文献求助10
10秒前
10秒前
shuai发布了新的文献求助10
11秒前
慕青应助111采纳,获得10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272