材料科学
合金
微观结构
腐蚀
晶界
冶金
极限抗拉强度
6111铝合金
相(物质)
纹理(宇宙学)
延伸率
复合材料
化学
有机化学
人工智能
计算机科学
图像(数学)
作者
Chengcheng Chen,Xiangjie Wang,Fang Yu,Zhaoxi Song,Lingfei Yang,Zhaosong Zhang,Jianzhong Cui,Dongfu Song
标识
DOI:10.1016/j.mtcomm.2024.108624
摘要
This article presents a systematic study on the synergistic effects of Mg element and rolling on the microstructure, mechanical properties, and corrosion resistance of Al-Mg-Mn alloy. The presence of Mg element leads to the formation of the β-phase (Al3Mg2). In the as-rolled alloy with high Mg content, the continuity of β-phase distributed at grain boundaries or fiber texture boundaries is weakened and its size is refined. This refinement is beneficial for improving the hardness and tensile properties of the alloy. However, it slightly reduces the electrical conductivity, elongation, and corrosion resistance of the alloy. The reasons for these changes in properties are analyzed from the perspective of dislocation motion. Comparing the hot-rolled state alloy with the cold-rolled state alloy, it is found that the corrosion resistance of the latter is improved. This improvement can be attributed to the difficulty of forming a continuous network of β-phase at grain boundaries, which significantly reduces the alloy's corrosion sensitivity. Additionally, the higher strength of the alloy can be attributed to dispersion strengthening and grain boundary strengthening. The objective of this work is to provide a strategy for obtaining Al-Mg-Mn alloy sheets with excellent performance
科研通智能强力驱动
Strongly Powered by AbleSci AI