TrafficGPT: Breaking the Token Barrier for Efficient Long Traffic Analysis and Generation

安全性令牌 计算机科学 计算机网络 计算机安全
作者
Jian Qu,Xiaobo Ma,Jianfeng Li
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2403.05822
摘要

Over the years, network traffic analysis and generation have advanced significantly. From traditional statistical methods, the field has progressed to sophisticated deep learning techniques. This progress has improved the ability to detect complex patterns and security threats, as well as to test and optimize network performance. However, obstacles persist, such as the dependence on labeled data for analysis and the difficulty of generating traffic samples that follow realistic patterns. Pre-trained deep neural networks have emerged as powerful tools to resolve these issues, offering improved performance by learning robust data representations from large unlabeled datasets. Despite their benefits, existing pre-trained models face challenges like token length limitation, which restricts their usefulness in comprehensive traffic analysis and realistic traffic generation. To address these challenges, we introduce TrafficGPT, a deep learning model that can tackle complex challenges related to long flow classification and generation tasks. This model uses generative pre-training with the linear attention mechanism, which allows for a substantially increased capacity of up to 12,032 tokens from the previous limit of only 512 tokens. TrafficGPT demonstrates superior performance in classification tasks, reaching state-of-the-art levels. In generation tasks, it closely resembles real traffic flows, with low JS divergence and an F1 score close to 0.5 (representing a random guess) in discriminating generated data. These advancements hold promise for future applications in both traffic flow classification and generation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私啤酒完成签到,获得积分10
1秒前
论文顺利发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助小f采纳,获得10
3秒前
wlwl发布了新的文献求助10
4秒前
LIYUAN发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助摸摸桑采纳,获得10
5秒前
大智若愚骨头完成签到,获得积分10
5秒前
5秒前
6秒前
飞翔的梦发布了新的文献求助10
7秒前
石头完成签到,获得积分10
8秒前
8秒前
乐乐应助儒雅的夏山采纳,获得10
8秒前
猪猪侠发布了新的文献求助10
9秒前
10秒前
派大珊发布了新的文献求助10
11秒前
东木应助Jenkin采纳,获得30
11秒前
唠叨的安荷完成签到,获得积分10
12秒前
小f发布了新的文献求助10
13秒前
上官若男应助皮崇知采纳,获得10
13秒前
nancy93228完成签到 ,获得积分10
14秒前
19秒前
梦隐雾发布了新的文献求助20
20秒前
派大珊完成签到,获得积分20
21秒前
Ellis发布了新的文献求助20
21秒前
21秒前
盐先生完成签到 ,获得积分10
21秒前
22秒前
22秒前
CWT完成签到,获得积分10
22秒前
23秒前
思源应助文静的慕梅采纳,获得10
24秒前
小f完成签到,获得积分10
25秒前
皮崇知发布了新的文献求助10
25秒前
CWT发布了新的文献求助10
26秒前
Jia发布了新的文献求助10
26秒前
27秒前
CC完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432