TrafficGPT: Breaking the Token Barrier for Efficient Long Traffic Analysis and Generation

安全性令牌 计算机科学 计算机网络 计算机安全
作者
Jian Qu,Xiaobo Ma,Jianfeng Li
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2403.05822
摘要

Over the years, network traffic analysis and generation have advanced significantly. From traditional statistical methods, the field has progressed to sophisticated deep learning techniques. This progress has improved the ability to detect complex patterns and security threats, as well as to test and optimize network performance. However, obstacles persist, such as the dependence on labeled data for analysis and the difficulty of generating traffic samples that follow realistic patterns. Pre-trained deep neural networks have emerged as powerful tools to resolve these issues, offering improved performance by learning robust data representations from large unlabeled datasets. Despite their benefits, existing pre-trained models face challenges like token length limitation, which restricts their usefulness in comprehensive traffic analysis and realistic traffic generation. To address these challenges, we introduce TrafficGPT, a deep learning model that can tackle complex challenges related to long flow classification and generation tasks. This model uses generative pre-training with the linear attention mechanism, which allows for a substantially increased capacity of up to 12,032 tokens from the previous limit of only 512 tokens. TrafficGPT demonstrates superior performance in classification tasks, reaching state-of-the-art levels. In generation tasks, it closely resembles real traffic flows, with low JS divergence and an F1 score close to 0.5 (representing a random guess) in discriminating generated data. These advancements hold promise for future applications in both traffic flow classification and generation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sidegate应助科研通管家采纳,获得10
刚刚
prosperp应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
li完成签到,获得积分10
刚刚
刚刚
mlml完成签到,获得积分10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
Zn应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
Zn应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
jimmy发布了新的文献求助10
1秒前
华仔应助hhh采纳,获得10
2秒前
hug完成签到,获得积分10
2秒前
科研通AI5应助cxwong采纳,获得10
2秒前
2秒前
沉敛一生完成签到,获得积分10
2秒前
hhy发布了新的文献求助10
2秒前
starry发布了新的文献求助10
3秒前
Wxd0211发布了新的文献求助10
3秒前
章鱼完成签到,获得积分20
3秒前
3秒前
任医生完成签到,获得积分10
3秒前
4秒前
wyh完成签到,获得积分10
4秒前
lalala完成签到,获得积分10
5秒前
FCH2023完成签到,获得积分10
5秒前
66应助cuihf06采纳,获得10
5秒前
半生完成签到 ,获得积分20
6秒前
锦鲤云间月完成签到,获得积分10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672