TrafficGPT: Breaking the Token Barrier for Efficient Long Traffic Analysis and Generation

安全性令牌 计算机科学 计算机网络 计算机安全
作者
Jian Qu,Xiaobo Ma,Jianfeng Li
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2403.05822
摘要

Over the years, network traffic analysis and generation have advanced significantly. From traditional statistical methods, the field has progressed to sophisticated deep learning techniques. This progress has improved the ability to detect complex patterns and security threats, as well as to test and optimize network performance. However, obstacles persist, such as the dependence on labeled data for analysis and the difficulty of generating traffic samples that follow realistic patterns. Pre-trained deep neural networks have emerged as powerful tools to resolve these issues, offering improved performance by learning robust data representations from large unlabeled datasets. Despite their benefits, existing pre-trained models face challenges like token length limitation, which restricts their usefulness in comprehensive traffic analysis and realistic traffic generation. To address these challenges, we introduce TrafficGPT, a deep learning model that can tackle complex challenges related to long flow classification and generation tasks. This model uses generative pre-training with the linear attention mechanism, which allows for a substantially increased capacity of up to 12,032 tokens from the previous limit of only 512 tokens. TrafficGPT demonstrates superior performance in classification tasks, reaching state-of-the-art levels. In generation tasks, it closely resembles real traffic flows, with low JS divergence and an F1 score close to 0.5 (representing a random guess) in discriminating generated data. These advancements hold promise for future applications in both traffic flow classification and generation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的摩托完成签到 ,获得积分10
1秒前
舒适的凡霜完成签到 ,获得积分10
1秒前
爱听歌的书本完成签到,获得积分10
3秒前
科研流子完成签到,获得积分10
5秒前
忧郁凡灵完成签到,获得积分10
6秒前
丰盛的煎饼应助林夕采纳,获得10
6秒前
澧abc完成签到 ,获得积分10
7秒前
热心市民小黄关注了科研通微信公众号
7秒前
7秒前
8秒前
8秒前
算命先生完成签到,获得积分10
9秒前
9秒前
13秒前
13秒前
JGR发布了新的文献求助10
13秒前
sunxx发布了新的文献求助10
14秒前
kk完成签到,获得积分10
16秒前
16秒前
英俊的铭应助HIBARRA采纳,获得10
18秒前
徐新雨完成签到 ,获得积分10
19秒前
20秒前
林夕完成签到 ,获得积分10
21秒前
JGR完成签到,获得积分10
23秒前
fairy完成签到,获得积分10
23秒前
23秒前
23秒前
lyj_eye完成签到,获得积分20
24秒前
李健的小迷弟应助wxr采纳,获得10
25秒前
所所应助KongHN采纳,获得10
26秒前
fairy发布了新的文献求助10
28秒前
28秒前
28秒前
哈哈哈完成签到 ,获得积分20
29秒前
Cynthia完成签到,获得积分20
29秒前
wanci应助吐槽君采纳,获得10
32秒前
32秒前
不要引力发布了新的文献求助10
33秒前
中华大美猴完成签到,获得积分10
36秒前
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260