亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TrafficGPT: Breaking the Token Barrier for Efficient Long Traffic Analysis and Generation

安全性令牌 计算机科学 计算机网络 计算机安全
作者
Jian Qu,Xiaobo Ma,Jianfeng Li
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2403.05822
摘要

Over the years, network traffic analysis and generation have advanced significantly. From traditional statistical methods, the field has progressed to sophisticated deep learning techniques. This progress has improved the ability to detect complex patterns and security threats, as well as to test and optimize network performance. However, obstacles persist, such as the dependence on labeled data for analysis and the difficulty of generating traffic samples that follow realistic patterns. Pre-trained deep neural networks have emerged as powerful tools to resolve these issues, offering improved performance by learning robust data representations from large unlabeled datasets. Despite their benefits, existing pre-trained models face challenges like token length limitation, which restricts their usefulness in comprehensive traffic analysis and realistic traffic generation. To address these challenges, we introduce TrafficGPT, a deep learning model that can tackle complex challenges related to long flow classification and generation tasks. This model uses generative pre-training with the linear attention mechanism, which allows for a substantially increased capacity of up to 12,032 tokens from the previous limit of only 512 tokens. TrafficGPT demonstrates superior performance in classification tasks, reaching state-of-the-art levels. In generation tasks, it closely resembles real traffic flows, with low JS divergence and an F1 score close to 0.5 (representing a random guess) in discriminating generated data. These advancements hold promise for future applications in both traffic flow classification and generation tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
yunshui发布了新的文献求助20
11秒前
13秒前
乐乐应助铭铭采纳,获得10
15秒前
那咋啦发布了新的文献求助10
18秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
lanxinyue应助科研通管家采纳,获得10
34秒前
李健应助科研通管家采纳,获得10
34秒前
42秒前
蓝色的纪念完成签到,获得积分10
53秒前
53秒前
Tree完成签到 ,获得积分10
58秒前
铭铭发布了新的文献求助10
59秒前
卓初露完成签到 ,获得积分0
1分钟前
NexusExplorer应助Xixicccccccc采纳,获得10
1分钟前
eeevaxxx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
jyy发布了新的文献求助10
1分钟前
铭铭发布了新的文献求助10
1分钟前
桐桐应助铭铭采纳,获得10
1分钟前
隐形曼青应助Marshall采纳,获得10
1分钟前
可靠的一手完成签到 ,获得积分10
1分钟前
1分钟前
Marshall发布了新的文献求助10
2分钟前
2分钟前
lyw发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
三三完成签到,获得积分10
2分钟前
思柔完成签到,获得积分10
2分钟前
Yi完成签到 ,获得积分10
2分钟前
一只大嵩鼠完成签到 ,获得积分10
3分钟前
3分钟前
吃橘子吗完成签到 ,获得积分10
3分钟前
anders完成签到 ,获得积分10
3分钟前
Ricardo完成签到 ,获得积分10
3分钟前
战战兢兢的失眠完成签到 ,获得积分10
3分钟前
3分钟前
翻翻发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507