Fully Automated Identification of Lymph Node Metastases and Lymphovascular Invasion in Endometrial Cancer From Multi‐Parametric MRI by Deep Learning

子宫内膜癌 医学 淋巴结 分割 磁共振成像 放射科 癌症 接收机工作特性 人工智能 计算机科学 内科学
作者
Yida Wang,Wei Liu,Yuanyuan Lu,Rennan Ling,Wenjing Wang,Shengyong Li,Feiran Zhang,Yan Ning,Xiaojun Chen,Guang Yang,He Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (6): 2730-2742 被引量:8
标识
DOI:10.1002/jmri.29344
摘要

Background Early and accurate identification of lymphatic node metastasis (LNM) and lymphatic vascular space invasion (LVSI) for endometrial cancer (EC) patients is important for treatment design, but difficult on multi‐parametric MRI (mpMRI) images. Purpose To develop a deep learning (DL) model to simultaneously identify of LNM and LVSI of EC from mpMRI images. Study Type Retrospective. Population Six hundred twenty‐one patients with histologically proven EC from two institutions, including 111 LNM‐positive and 168 LVSI‐positive, divided into training, internal, and external test cohorts of 398, 169, and 54 patients, respectively. Field Strength/Sequence T2‐weighted imaging (T2WI), contrast‐enhanced T1WI (CE‐T1WI), and diffusion‐weighted imaging (DWI) were scanned with turbo spin‐echo, gradient‐echo, and two‐dimensional echo‐planar sequences, using either a 1.5 T or 3 T system. Assessment EC lesions were manually delineated on T2WI by two radiologists and used to train an nnU‐Net model for automatic segmentation. A multi‐task DL model was developed to simultaneously identify LNM and LVSI positive status using the segmented EC lesion regions and T2WI, CE‐T1WI, and DWI images as inputs. The performance of the model for LNM‐positive diagnosis was compared with those of three radiologists in the external test cohort. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate segmentation results. Receiver Operating Characteristic (ROC) analysis was used to assess the performance of LNM and LVSI status identification. P value <0.05 was considered significant. Results EC lesion segmentation model achieved mean DSC values of 0.700 ± 0.25 and 0.693 ± 0.21 in the internal and external test cohorts, respectively. For LNM positive/LVSI positive identification, the proposed model achieved AUC values of 0.895/0.848, 0.806/0.795, and 0.804/0.728 in the training, internal, and external test cohorts, respectively, and better than those of three radiologists (AUC = 0.770/0.648/0.674). Data Conclusion The proposed model has potential to help clinicians to identify LNM and LVSI status of EC patients and improve treatment planning. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助daypoi采纳,获得10
刚刚
片尾曲完成签到,获得积分10
刚刚
华山完成签到,获得积分10
2秒前
Jasper应助优秀元枫采纳,获得10
2秒前
踏雪寻梅完成签到,获得积分10
2秒前
彩色的万仇完成签到,获得积分10
2秒前
小坚果发布了新的文献求助10
3秒前
从容映易完成签到,获得积分10
3秒前
善学以致用应助duxh123采纳,获得10
3秒前
4秒前
丘比特应助健壮的芹菜采纳,获得10
4秒前
量子星尘发布了新的文献求助10
7秒前
小飞棍来nou完成签到,获得积分10
8秒前
9秒前
不安的黑猫完成签到,获得积分10
9秒前
11秒前
cc完成签到 ,获得积分10
11秒前
11秒前
12秒前
duxh123完成签到,获得积分10
13秒前
fan发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
ZTF完成签到,获得积分10
14秒前
16秒前
淡人完成签到,获得积分10
16秒前
kkscanl完成签到 ,获得积分10
16秒前
duxh123发布了新的文献求助10
16秒前
wanci应助水电费采纳,获得10
16秒前
优秀元枫发布了新的文献求助10
16秒前
123jopop完成签到,获得积分10
18秒前
luca发布了新的文献求助10
18秒前
狂野的芯完成签到,获得积分10
18秒前
li完成签到,获得积分10
19秒前
T拐拐发布了新的文献求助10
20秒前
慧子发布了新的文献求助10
21秒前
21秒前
张悦林发布了新的文献求助30
21秒前
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445925
求助须知:如何正确求助?哪些是违规求助? 4555131
关于积分的说明 14249821
捐赠科研通 4477403
什么是DOI,文献DOI怎么找? 2453266
邀请新用户注册赠送积分活动 1444039
关于科研通互助平台的介绍 1420008