Fully Automated Identification of Lymph Node Metastases and Lymphovascular Invasion in Endometrial Cancer From Multi‐Parametric MRI by Deep Learning

子宫内膜癌 医学 淋巴结 分割 磁共振成像 放射科 癌症 接收机工作特性 人工智能 计算机科学 内科学
作者
Yida Wang,Wei Liu,Yuanyuan Lu,Rennan Ling,Wenjing Wang,Shengyong Li,Feiran Zhang,Yan Ning,Xiaojun Chen,Guang Yang,He Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (6): 2730-2742 被引量:8
标识
DOI:10.1002/jmri.29344
摘要

Background Early and accurate identification of lymphatic node metastasis (LNM) and lymphatic vascular space invasion (LVSI) for endometrial cancer (EC) patients is important for treatment design, but difficult on multi‐parametric MRI (mpMRI) images. Purpose To develop a deep learning (DL) model to simultaneously identify of LNM and LVSI of EC from mpMRI images. Study Type Retrospective. Population Six hundred twenty‐one patients with histologically proven EC from two institutions, including 111 LNM‐positive and 168 LVSI‐positive, divided into training, internal, and external test cohorts of 398, 169, and 54 patients, respectively. Field Strength/Sequence T2‐weighted imaging (T2WI), contrast‐enhanced T1WI (CE‐T1WI), and diffusion‐weighted imaging (DWI) were scanned with turbo spin‐echo, gradient‐echo, and two‐dimensional echo‐planar sequences, using either a 1.5 T or 3 T system. Assessment EC lesions were manually delineated on T2WI by two radiologists and used to train an nnU‐Net model for automatic segmentation. A multi‐task DL model was developed to simultaneously identify LNM and LVSI positive status using the segmented EC lesion regions and T2WI, CE‐T1WI, and DWI images as inputs. The performance of the model for LNM‐positive diagnosis was compared with those of three radiologists in the external test cohort. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate segmentation results. Receiver Operating Characteristic (ROC) analysis was used to assess the performance of LNM and LVSI status identification. P value <0.05 was considered significant. Results EC lesion segmentation model achieved mean DSC values of 0.700 ± 0.25 and 0.693 ± 0.21 in the internal and external test cohorts, respectively. For LNM positive/LVSI positive identification, the proposed model achieved AUC values of 0.895/0.848, 0.806/0.795, and 0.804/0.728 in the training, internal, and external test cohorts, respectively, and better than those of three radiologists (AUC = 0.770/0.648/0.674). Data Conclusion The proposed model has potential to help clinicians to identify LNM and LVSI status of EC patients and improve treatment planning. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桑榆非晚完成签到,获得积分10
刚刚
CodeCraft应助称鑫儒意采纳,获得30
刚刚
雷霆康康完成签到,获得积分10
1秒前
CR7完成签到,获得积分0
1秒前
玉麒麟完成签到,获得积分0
1秒前
结实的栾完成签到,获得积分10
2秒前
2秒前
cff完成签到,获得积分10
2秒前
shinhee完成签到,获得积分10
2秒前
3秒前
3秒前
江河日山完成签到,获得积分10
3秒前
ruoyi完成签到,获得积分20
4秒前
跳跃的太君完成签到,获得积分10
4秒前
Son4904完成签到,获得积分10
5秒前
cc完成签到,获得积分10
5秒前
胡图图完成签到 ,获得积分10
5秒前
英俊的小蝴蝶完成签到,获得积分10
5秒前
5秒前
我嘞个豆完成签到,获得积分10
6秒前
张强完成签到,获得积分10
6秒前
tian完成签到,获得积分10
6秒前
7秒前
June发布了新的文献求助50
7秒前
ruoyi发布了新的文献求助10
7秒前
俭朴柚子完成签到,获得积分10
7秒前
7秒前
娇气的背包完成签到,获得积分10
8秒前
眼科女医生小魏完成签到 ,获得积分10
8秒前
潇洒的白昼完成签到,获得积分10
8秒前
晶晶完成签到,获得积分10
9秒前
Febrine0502完成签到,获得积分10
9秒前
金石为开完成签到,获得积分10
9秒前
10秒前
阳光火车完成签到 ,获得积分10
10秒前
零知识完成签到 ,获得积分10
11秒前
小透明发布了新的文献求助10
11秒前
12秒前
活力的秋灵完成签到,获得积分10
12秒前
颖宝老公完成签到,获得积分0
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387547
求助须知:如何正确求助?哪些是违规求助? 4509573
关于积分的说明 14031802
捐赠科研通 4420371
什么是DOI,文献DOI怎么找? 2428201
邀请新用户注册赠送积分活动 1420797
关于科研通互助平台的介绍 1400002