Fully Automated Identification of Lymph Node Metastases and Lymphovascular Invasion in Endometrial Cancer From Multi‐Parametric MRI by Deep Learning

子宫内膜癌 医学 淋巴结 分割 磁共振成像 放射科 癌症 接收机工作特性 人工智能 计算机科学 内科学
作者
Yida Wang,Wei Liu,Yuanyuan Lu,Rennan Ling,Wenjing Wang,Shengyong Li,Feiran Zhang,Yan Ning,Xiaojun Chen,Guang Yang,He Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:3
标识
DOI:10.1002/jmri.29344
摘要

Background Early and accurate identification of lymphatic node metastasis (LNM) and lymphatic vascular space invasion (LVSI) for endometrial cancer (EC) patients is important for treatment design, but difficult on multi‐parametric MRI (mpMRI) images. Purpose To develop a deep learning (DL) model to simultaneously identify of LNM and LVSI of EC from mpMRI images. Study Type Retrospective. Population Six hundred twenty‐one patients with histologically proven EC from two institutions, including 111 LNM‐positive and 168 LVSI‐positive, divided into training, internal, and external test cohorts of 398, 169, and 54 patients, respectively. Field Strength/Sequence T2‐weighted imaging (T2WI), contrast‐enhanced T1WI (CE‐T1WI), and diffusion‐weighted imaging (DWI) were scanned with turbo spin‐echo, gradient‐echo, and two‐dimensional echo‐planar sequences, using either a 1.5 T or 3 T system. Assessment EC lesions were manually delineated on T2WI by two radiologists and used to train an nnU‐Net model for automatic segmentation. A multi‐task DL model was developed to simultaneously identify LNM and LVSI positive status using the segmented EC lesion regions and T2WI, CE‐T1WI, and DWI images as inputs. The performance of the model for LNM‐positive diagnosis was compared with those of three radiologists in the external test cohort. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate segmentation results. Receiver Operating Characteristic (ROC) analysis was used to assess the performance of LNM and LVSI status identification. P value <0.05 was considered significant. Results EC lesion segmentation model achieved mean DSC values of 0.700 ± 0.25 and 0.693 ± 0.21 in the internal and external test cohorts, respectively. For LNM positive/LVSI positive identification, the proposed model achieved AUC values of 0.895/0.848, 0.806/0.795, and 0.804/0.728 in the training, internal, and external test cohorts, respectively, and better than those of three radiologists (AUC = 0.770/0.648/0.674). Data Conclusion The proposed model has potential to help clinicians to identify LNM and LVSI status of EC patients and improve treatment planning. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lslfreedom发布了新的文献求助10
1秒前
1秒前
Sun发布了新的文献求助10
1秒前
小马甲应助不靠谱采纳,获得10
1秒前
烟花应助GSGSG采纳,获得10
2秒前
lh完成签到,获得积分10
2秒前
GOW完成签到,获得积分10
2秒前
隔壁小曾发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助山雀采纳,获得10
3秒前
huhu完成签到 ,获得积分10
4秒前
czj完成签到 ,获得积分10
4秒前
hz52发布了新的文献求助10
4秒前
九卫完成签到 ,获得积分20
5秒前
多喝热水完成签到,获得积分10
5秒前
月月月鸟伟完成签到,获得积分10
6秒前
情怀应助Naomi采纳,获得10
6秒前
6秒前
搬砖的化学男完成签到 ,获得积分0
6秒前
7秒前
SSSShawn发布了新的文献求助10
7秒前
威武的初兰完成签到 ,获得积分10
7秒前
义气的夏寒完成签到,获得积分10
8秒前
9秒前
9秒前
lixy完成签到,获得积分10
9秒前
乐乐乐乐乐乐应助斯文伊采纳,获得10
10秒前
小欢完成签到,获得积分10
10秒前
Ygy发布了新的文献求助10
10秒前
fdwonder完成签到,获得积分10
11秒前
11秒前
可可西里完成签到,获得积分10
11秒前
hz52完成签到,获得积分10
11秒前
推土机爱学习完成签到 ,获得积分10
11秒前
易止完成签到 ,获得积分10
11秒前
Iris完成签到 ,获得积分10
11秒前
Zhaowx完成签到,获得积分10
11秒前
12秒前
GSGSG发布了新的文献求助10
12秒前
ajun完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044