Fully Automated Identification of Lymph Node Metastases and Lymphovascular Invasion in Endometrial Cancer From Multi‐Parametric MRI by Deep Learning

子宫内膜癌 医学 淋巴结 分割 磁共振成像 放射科 癌症 接收机工作特性 人工智能 计算机科学 内科学
作者
Yida Wang,Wei Liu,Yuanyuan Lu,Rennan Ling,Wenjing Wang,Shengyong Li,Feiran Zhang,Yan Ning,Xiaojun Chen,Guang Yang,He Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:3
标识
DOI:10.1002/jmri.29344
摘要

Background Early and accurate identification of lymphatic node metastasis (LNM) and lymphatic vascular space invasion (LVSI) for endometrial cancer (EC) patients is important for treatment design, but difficult on multi‐parametric MRI (mpMRI) images. Purpose To develop a deep learning (DL) model to simultaneously identify of LNM and LVSI of EC from mpMRI images. Study Type Retrospective. Population Six hundred twenty‐one patients with histologically proven EC from two institutions, including 111 LNM‐positive and 168 LVSI‐positive, divided into training, internal, and external test cohorts of 398, 169, and 54 patients, respectively. Field Strength/Sequence T2‐weighted imaging (T2WI), contrast‐enhanced T1WI (CE‐T1WI), and diffusion‐weighted imaging (DWI) were scanned with turbo spin‐echo, gradient‐echo, and two‐dimensional echo‐planar sequences, using either a 1.5 T or 3 T system. Assessment EC lesions were manually delineated on T2WI by two radiologists and used to train an nnU‐Net model for automatic segmentation. A multi‐task DL model was developed to simultaneously identify LNM and LVSI positive status using the segmented EC lesion regions and T2WI, CE‐T1WI, and DWI images as inputs. The performance of the model for LNM‐positive diagnosis was compared with those of three radiologists in the external test cohort. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate segmentation results. Receiver Operating Characteristic (ROC) analysis was used to assess the performance of LNM and LVSI status identification. P value <0.05 was considered significant. Results EC lesion segmentation model achieved mean DSC values of 0.700 ± 0.25 and 0.693 ± 0.21 in the internal and external test cohorts, respectively. For LNM positive/LVSI positive identification, the proposed model achieved AUC values of 0.895/0.848, 0.806/0.795, and 0.804/0.728 in the training, internal, and external test cohorts, respectively, and better than those of three radiologists (AUC = 0.770/0.648/0.674). Data Conclusion The proposed model has potential to help clinicians to identify LNM and LVSI status of EC patients and improve treatment planning. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
steven完成签到 ,获得积分10
2秒前
舒涵完成签到,获得积分20
2秒前
lizhiqian2024完成签到,获得积分10
5秒前
Arrhenius完成签到,获得积分10
6秒前
悠悠完成签到 ,获得积分10
7秒前
人不犯二枉少年完成签到,获得积分10
8秒前
8秒前
研友_Lw7MKL完成签到,获得积分10
8秒前
Alan完成签到,获得积分10
9秒前
葳葳发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
在险峰发布了新的文献求助10
12秒前
正直的沛凝完成签到,获得积分10
12秒前
13秒前
14秒前
海鸥完成签到,获得积分10
14秒前
蒋若风完成签到,获得积分10
14秒前
爆米花应助孙文杰采纳,获得10
15秒前
小艾完成签到,获得积分10
15秒前
明理萃完成签到 ,获得积分10
16秒前
苏黎世发布了新的文献求助10
16秒前
17秒前
乔安发布了新的文献求助10
17秒前
炫哥IRIS发布了新的文献求助10
17秒前
LaTeXer给积极行天的求助进行了留言
18秒前
ww发布了新的文献求助10
18秒前
Carlo完成签到,获得积分10
19秒前
蓝胖子完成签到 ,获得积分10
20秒前
21秒前
终生科研徒刑完成签到 ,获得积分10
21秒前
22秒前
ysc发布了新的文献求助20
24秒前
25秒前
LKX完成签到 ,获得积分10
25秒前
纯真的诗兰完成签到,获得积分10
26秒前
自然函完成签到 ,获得积分10
26秒前
等一个晴天完成签到,获得积分10
27秒前
as发布了新的文献求助100
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048