已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RGB-to-HSV: A Frequency-Spectrum Unfolding Network for Spectral Super-Resolution of RGB Videos

RGB颜色模型 计算机科学 人工智能 HSL和HSV色彩空间 分辨率(逻辑) 超分辨率 计算机视觉 可视化 光谱分析 遥感 物理 地质学 光谱学 天文 图像(数学) 病毒 病毒学 生物
作者
Chengle Zhou,Zhi He,Anjun Lou,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:11
标识
DOI:10.1109/tgrs.2024.3361929
摘要

Hyperspectral videos (HSVs) play an important role in the monitoring domain, as they can provide more information than RGB videos about the movement of interesting objects from the perspective of material interpretation. However, the acquisition of HSV data is expensive and time-consuming, whereas RGB videos are readily available. In order to obtain HSV data from its corresponding RGB data, this paper proposes a lightweight frequency-spectrum unfolding network (FSUF-Net) for spectral super-resolution (SSR) of RGB video data. Specifically, the proposed FSUF-Net method belongs to a data-knowledge-driven joint paradigm, which is an interpretable SSR model instead of an end-to-end black-box architecture. The FSUF-Net consists of five main steps. First, the conversion representation of RGB video data to HSV data is derived into an initial recovery term, a data term, and a prior term according to a variable splitting method. Second, the spectral response function between hyperspectral images (HSIs) and RGB images is utilized to achieve the initial recovery term. Third, a convolutional neural network (CNN)-based frequency-domain subnetwork (called F-Net) is designed to solve the data subproblem for recovering the spatial detail information from the HSI, and a Transformer-based spectrum-domain subnetwork (called S-Net) is developed to solve the prior subproblem for reconstructing the spectral information of the HSI. Fourth, two network modules are employed to conduct parametric self-learning. Finally, the HSV data can be obtained in a fixed number of iterations, including alternately solving the above data subproblem and the prior subproblem. Experiments performed on several real datasets demonstrated that the FSUF-Net can effectively reconstruct HSV from RGB videos as compared to traditional and state-of-the-art SSR methods. The proposed method is available online: https://github.com/chengle-zhou/HSV-SSR_FSUF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
带头大哥应助cdu采纳,获得200
1秒前
桐桐应助火焰向上采纳,获得10
4秒前
6秒前
6秒前
Ashley完成签到,获得积分10
7秒前
starry完成签到 ,获得积分10
9秒前
LONG完成签到 ,获得积分10
10秒前
Docyongsun完成签到,获得积分10
11秒前
Ain发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
哈哈哈完成签到,获得积分20
13秒前
meinv666发布了新的文献求助10
14秒前
LJ徽完成签到 ,获得积分10
15秒前
哈哈哈发布了新的文献求助10
17秒前
原本山川发布了新的文献求助10
18秒前
19秒前
zzzz完成签到,获得积分10
19秒前
19秒前
19秒前
打打应助杨永磊采纳,获得30
19秒前
Hello应助Ain采纳,获得10
19秒前
火焰向上发布了新的文献求助10
20秒前
meinv666完成签到,获得积分10
21秒前
竹焚完成签到 ,获得积分10
22秒前
完美世界应助matteo采纳,获得10
22秒前
LJYang完成签到 ,获得积分10
22秒前
23秒前
24秒前
24秒前
火焰向上完成签到,获得积分10
25秒前
25秒前
27秒前
xjcy举报lili求助涉嫌违规
27秒前
chenchen发布了新的文献求助10
29秒前
羟醛缩合完成签到 ,获得积分10
29秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125773
求助须知:如何正确求助?哪些是违规求助? 2776098
关于积分的说明 7729147
捐赠科研通 2431519
什么是DOI,文献DOI怎么找? 1292132
科研通“疑难数据库(出版商)”最低求助积分说明 622387
版权声明 600380