Safety Helmet Detection Algorithm for Complex Scenarios Based on PConv-YOLOv8
计算机科学
算法
算法设计
作者
Yuanyuan Wang,Feilong Jiang,Yazhou Li,Haiyan Zhang,Meifeng Wang,Yan Su
标识
DOI:10.1109/iccd59681.2023.10420675
摘要
Detecting safety helmets in complex environments is challenging due to issues like occlusion and lighting variations. Addressing the issues of slow detection speed and low object detection accuracy in complex environments with the YOLOv8 model, this paper introduces a lightweight safety helmet detection model, called PConv-YOLOv8, that is suitable for real-time applications in complex environments. Our method incorporates the PConv (Partial Convolution) module into the YOLOv8 model, reducing the complexity of the feature extraction network while enhancing feature representation accuracy. It also incorporates SimAM attention to extract and enhance the most relevant features by evaluating their similarity. Additionally, it considers category imbalance and positional regression in the target detection task, enhancing the model’s performance in target category identification and positional localization. Moreover, we propose the Wise-Distribution Focal Loss function to improve bounding box selection accuracy and enhance the model’s robustness. This paper introduces the Wise-Distribution Focal Loss method, which enhances the performance of target category recognition and location localization by improving the accuracy of bounding box selection and increasing the robustness of the overall model. The experimental results demonstrate that the method proposed in this paper achieves a 125% improvement in detection speed and a 1.8% increase in mAP0.5 compared to the YOLOv8 model.