Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management

强化学习 文件夹 钢筋 风险管理 计算机科学 风险分析(工程) 业务 人工智能 心理学 财务 社会心理学
作者
Zhenglong Li,Vincent H. Tam,Kwan L. Yeung
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.00515
摘要

Deep or reinforcement learning (RL) approaches have been adapted as reactive agents to quickly learn and respond with new investment strategies for portfolio management under the highly turbulent financial market environments in recent years. In many cases, due to the very complex correlations among various financial sectors, and the fluctuating trends in different financial markets, a deep or reinforcement learning based agent can be biased in maximising the total returns of the newly formulated investment portfolio while neglecting its potential risks under the turmoil of various market conditions in the global or regional sectors. Accordingly, a multi-agent and self-adaptive framework namely the MASA is proposed in which a sophisticated multi-agent reinforcement learning (RL) approach is adopted through two cooperating and reactive agents to carefully and dynamically balance the trade-off between the overall portfolio returns and their potential risks. Besides, a very flexible and proactive agent as the market observer is integrated into the MASA framework to provide some additional information on the estimated market trends as valuable feedbacks for multi-agent RL approach to quickly adapt to the ever-changing market conditions. The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework based on the multi-agent RL approach against many well-known RL-based approaches on the challenging data sets of the CSI 300, Dow Jones Industrial Average and S&P 500 indexes over the past 10 years. More importantly, our proposed MASA framework shed lights on many possible directions for future investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanonamo发布了新的文献求助10
1秒前
尊敬明雪完成签到,获得积分10
1秒前
小李完成签到,获得积分10
2秒前
2秒前
开朗的寻桃完成签到,获得积分10
2秒前
2秒前
4秒前
认真又亦完成签到 ,获得积分10
4秒前
hcx发布了新的文献求助10
4秒前
天真芷云发布了新的文献求助10
4秒前
4秒前
123的小王子关注了科研通微信公众号
5秒前
Deer完成签到,获得积分10
6秒前
6秒前
秋慕蕊发布了新的文献求助10
7秒前
7秒前
素食主义的猫完成签到,获得积分10
7秒前
iorpi完成签到,获得积分10
8秒前
Sun完成签到,获得积分10
9秒前
9秒前
qiu完成签到,获得积分10
11秒前
Fonxi发布了新的文献求助10
11秒前
夏来发布了新的文献求助10
12秒前
江浪浪应助房弼采纳,获得10
12秒前
合适太清完成签到,获得积分10
13秒前
略略略发布了新的文献求助10
14秒前
追寻的惜芹完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
研友_xLOMQZ完成签到,获得积分10
16秒前
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得30
17秒前
CWNU_HAN应助科研通管家采纳,获得30
17秒前
17秒前
orixero应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
18秒前
领导范儿应助笙默0329采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866