亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Control Room Operator Decision Making

操作员(生物学) 控制(管理) 计算机科学 化学 人工智能 生物化学 转录因子 基因 抑制因子
作者
Joseph Mietkiewicz,Ammar N. Abbas,Chidera Winifred Amazu,Gabriele Baldissone,Anders Madsen,Micaela Demichela,Maria Chiara Leva
出处
期刊:Processes [MDPI AG]
卷期号:12 (2): 328-328
标识
DOI:10.3390/pr12020328
摘要

In the dynamic and complex environment of industrial control rooms, operators are often inundated with numerous tasks and alerts, leading to a state known as task overload. This condition can result in decision fatigue and increased reliance on cognitive biases, which may compromise the decision-making process. To mitigate these risks, the implementation of decision support systems (DSSs) is essential. These systems are designed to aid operators in making swift, well-informed decisions, especially when their judgment may be faltering. Our research presents an artificial intelligence (AI)-based framework utilizing dynamic influence diagrams and reinforcement learning to develop a powerful decision support system. The foundation of this AI framework is the creation of a robust, interpretable, and effective DSS that aids control room operators during critical process disturbances. By incorporating expert knowledge, the dynamic influence diagram provides a comprehensive model that captures the uncertainties inherent in complex industrial processes. It excels in anomaly detection and recommending optimal actions. Furthermore, this model is improved through a strategic collaboration with reinforcement learning, which refines the recommendations to be more context-specific and accurate. The primary goal of this AI framework is to equip operators with a live, reliable DSS that significantly enhances their response during process upsets. This paper describes the development of the AI framework and its implementation in a simulated control room environment. Our results show that the DSS can improve operator performance and reduce cognitive workload. However, it also uncovers a trade-off with situation awareness, which may decrease as operators become overly dependent on the system’s guidance. Our study highlights the necessity of balancing the advantages of decision support with the need to maintain operator engagement and understanding during process operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜的柚子完成签到,获得积分10
1秒前
2秒前
4秒前
乐乐应助调皮的夏寒采纳,获得10
4秒前
dongguapi发布了新的文献求助10
7秒前
啧啧完成签到,获得积分10
10秒前
Garnieta完成签到,获得积分10
15秒前
suodeheng发布了新的文献求助50
19秒前
叽了咕噜应助黄道婆采纳,获得10
24秒前
Owen应助黄道婆采纳,获得10
24秒前
执着的忆雪完成签到,获得积分10
25秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
31秒前
量子星尘发布了新的文献求助10
33秒前
Ava应助绿色植物采纳,获得10
34秒前
VDC发布了新的文献求助10
36秒前
scc发布了新的文献求助10
38秒前
绿色植物完成签到,获得积分10
53秒前
春天的粥完成签到 ,获得积分10
53秒前
ding应助WAR708采纳,获得10
57秒前
不想干完成签到,获得积分10
1分钟前
一杯沧海完成签到 ,获得积分10
1分钟前
histamin完成签到,获得积分10
1分钟前
瘦瘦大地完成签到,获得积分10
1分钟前
Umair完成签到,获得积分10
1分钟前
王一生完成签到,获得积分10
1分钟前
机灵猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
悟123完成签到 ,获得积分10
1分钟前
不想干发布了新的文献求助10
1分钟前
1分钟前
叁拾肆完成签到,获得积分10
1分钟前
JamesPei应助VDC采纳,获得10
1分钟前
钦钦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Hello应助不想干采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913294
捐赠科研通 4747476
什么是DOI,文献DOI怎么找? 2549158
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049