Enhancing Control Room Operator Decision Making

操作员(生物学) 控制(管理) 计算机科学 化学 人工智能 生物化学 转录因子 基因 抑制因子
作者
Joseph Mietkiewicz,Ammar N. Abbas,Chidera Winifred Amazu,Gabriele Baldissone,Anders Madsen,Micaela Demichela,Maria Chiara Leva
出处
期刊:Processes [MDPI AG]
卷期号:12 (2): 328-328
标识
DOI:10.3390/pr12020328
摘要

In the dynamic and complex environment of industrial control rooms, operators are often inundated with numerous tasks and alerts, leading to a state known as task overload. This condition can result in decision fatigue and increased reliance on cognitive biases, which may compromise the decision-making process. To mitigate these risks, the implementation of decision support systems (DSSs) is essential. These systems are designed to aid operators in making swift, well-informed decisions, especially when their judgment may be faltering. Our research presents an artificial intelligence (AI)-based framework utilizing dynamic influence diagrams and reinforcement learning to develop a powerful decision support system. The foundation of this AI framework is the creation of a robust, interpretable, and effective DSS that aids control room operators during critical process disturbances. By incorporating expert knowledge, the dynamic influence diagram provides a comprehensive model that captures the uncertainties inherent in complex industrial processes. It excels in anomaly detection and recommending optimal actions. Furthermore, this model is improved through a strategic collaboration with reinforcement learning, which refines the recommendations to be more context-specific and accurate. The primary goal of this AI framework is to equip operators with a live, reliable DSS that significantly enhances their response during process upsets. This paper describes the development of the AI framework and its implementation in a simulated control room environment. Our results show that the DSS can improve operator performance and reduce cognitive workload. However, it also uncovers a trade-off with situation awareness, which may decrease as operators become overly dependent on the system’s guidance. Our study highlights the necessity of balancing the advantages of decision support with the need to maintain operator engagement and understanding during process operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nqterysc完成签到,获得积分10
刚刚
wang完成签到 ,获得积分10
1秒前
2秒前
无花果应助月月采纳,获得10
5秒前
7秒前
我要当博士完成签到,获得积分10
8秒前
jia完成签到,获得积分10
9秒前
lbl发布了新的文献求助10
12秒前
电四拟完成签到 ,获得积分10
14秒前
susu发布了新的文献求助10
15秒前
Wnn完成签到 ,获得积分10
15秒前
Hello应助聪慧的正豪采纳,获得10
16秒前
引觞甫完成签到,获得积分10
17秒前
18秒前
Hello应助lbl采纳,获得10
19秒前
崔灿完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
lv发布了新的文献求助10
22秒前
FashionBoy应助落雪芊芊采纳,获得10
22秒前
23秒前
jlb关闭了jlb文献求助
23秒前
Physio发布了新的文献求助10
24秒前
wyq完成签到 ,获得积分10
26秒前
27秒前
aabsd完成签到,获得积分10
27秒前
刘白告发布了新的文献求助10
27秒前
Aero完成签到,获得积分10
29秒前
美满熊猫完成签到,获得积分10
30秒前
hhc发布了新的文献求助10
32秒前
浮生六记完成签到 ,获得积分10
34秒前
ne完成签到 ,获得积分10
34秒前
鼠鼠完成签到 ,获得积分10
35秒前
lv完成签到,获得积分10
35秒前
36秒前
Physio完成签到,获得积分10
36秒前
Akim应助rachel采纳,获得30
37秒前
大龙哥886应助无心的苡采纳,获得10
37秒前
39秒前
66发布了新的文献求助10
41秒前
tanlei发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603979
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856475
捐赠科研通 4695849
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507256
关于科研通互助平台的介绍 1471832