Enhancing Control Room Operator Decision Making

操作员(生物学) 控制(管理) 计算机科学 化学 人工智能 生物化学 转录因子 基因 抑制因子
作者
Joseph Mietkiewicz,Ammar N. Abbas,Chidera Winifred Amazu,Gabriele Baldissone,Anders Madsen,Micaela Demichela,Maria Chiara Leva
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 328-328
标识
DOI:10.3390/pr12020328
摘要

In the dynamic and complex environment of industrial control rooms, operators are often inundated with numerous tasks and alerts, leading to a state known as task overload. This condition can result in decision fatigue and increased reliance on cognitive biases, which may compromise the decision-making process. To mitigate these risks, the implementation of decision support systems (DSSs) is essential. These systems are designed to aid operators in making swift, well-informed decisions, especially when their judgment may be faltering. Our research presents an artificial intelligence (AI)-based framework utilizing dynamic influence diagrams and reinforcement learning to develop a powerful decision support system. The foundation of this AI framework is the creation of a robust, interpretable, and effective DSS that aids control room operators during critical process disturbances. By incorporating expert knowledge, the dynamic influence diagram provides a comprehensive model that captures the uncertainties inherent in complex industrial processes. It excels in anomaly detection and recommending optimal actions. Furthermore, this model is improved through a strategic collaboration with reinforcement learning, which refines the recommendations to be more context-specific and accurate. The primary goal of this AI framework is to equip operators with a live, reliable DSS that significantly enhances their response during process upsets. This paper describes the development of the AI framework and its implementation in a simulated control room environment. Our results show that the DSS can improve operator performance and reduce cognitive workload. However, it also uncovers a trade-off with situation awareness, which may decrease as operators become overly dependent on the system’s guidance. Our study highlights the necessity of balancing the advantages of decision support with the need to maintain operator engagement and understanding during process operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助frigst采纳,获得10
1秒前
koc完成签到,获得积分20
1秒前
xmhxpz发布了新的文献求助10
2秒前
嘿猪聪明完成签到,获得积分10
2秒前
懵懂的绿茶完成签到,获得积分10
2秒前
蜡笔小新完成签到,获得积分10
2秒前
夏熠完成签到,获得积分10
3秒前
乐观化蛹完成签到,获得积分10
3秒前
传奇3应助超级盼海采纳,获得50
3秒前
4秒前
fang完成签到,获得积分10
4秒前
Maggie完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
啊哦完成签到 ,获得积分10
5秒前
会飞的猪发布了新的文献求助10
7秒前
8秒前
科研通AI5应助神勇太清采纳,获得10
9秒前
Rain_BJ完成签到,获得积分10
9秒前
10秒前
爱听歌的依霜完成签到,获得积分10
10秒前
skj你考六级完成签到,获得积分10
11秒前
simon完成签到,获得积分10
11秒前
汉堡包应助qq采纳,获得10
12秒前
hhhhh哈哈哈完成签到,获得积分10
12秒前
欧皇降霖发布了新的文献求助10
13秒前
慕青应助会飞的猪采纳,获得10
14秒前
Muller完成签到,获得积分10
15秒前
蜡笔小新发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
chen完成签到,获得积分10
17秒前
18秒前
天天快乐应助饱满的亦旋采纳,获得10
18秒前
砰砰彭发布了新的文献求助10
19秒前
20秒前
潮汐发布了新的文献求助10
20秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234