Enhancing Control Room Operator Decision Making

操作员(生物学) 控制(管理) 计算机科学 化学 人工智能 生物化学 抑制因子 转录因子 基因
作者
Joseph Mietkiewicz,Ammar N. Abbas,Chidera Winifred Amazu,Gabriele Baldissone,Anders Madsen,Micaela Demichela,Maria Chiara Leva
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 328-328
标识
DOI:10.3390/pr12020328
摘要

In the dynamic and complex environment of industrial control rooms, operators are often inundated with numerous tasks and alerts, leading to a state known as task overload. This condition can result in decision fatigue and increased reliance on cognitive biases, which may compromise the decision-making process. To mitigate these risks, the implementation of decision support systems (DSSs) is essential. These systems are designed to aid operators in making swift, well-informed decisions, especially when their judgment may be faltering. Our research presents an artificial intelligence (AI)-based framework utilizing dynamic influence diagrams and reinforcement learning to develop a powerful decision support system. The foundation of this AI framework is the creation of a robust, interpretable, and effective DSS that aids control room operators during critical process disturbances. By incorporating expert knowledge, the dynamic influence diagram provides a comprehensive model that captures the uncertainties inherent in complex industrial processes. It excels in anomaly detection and recommending optimal actions. Furthermore, this model is improved through a strategic collaboration with reinforcement learning, which refines the recommendations to be more context-specific and accurate. The primary goal of this AI framework is to equip operators with a live, reliable DSS that significantly enhances their response during process upsets. This paper describes the development of the AI framework and its implementation in a simulated control room environment. Our results show that the DSS can improve operator performance and reduce cognitive workload. However, it also uncovers a trade-off with situation awareness, which may decrease as operators become overly dependent on the system’s guidance. Our study highlights the necessity of balancing the advantages of decision support with the need to maintain operator engagement and understanding during process operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺顺尼完成签到 ,获得积分10
1秒前
bkagyin应助H7采纳,获得10
1秒前
1秒前
顺利毕业应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
你的风筝应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
Zel博博应助科研通管家采纳,获得20
3秒前
SYLH应助科研通管家采纳,获得50
3秒前
大模型应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得20
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
期刊应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得30
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
young完成签到,获得积分10
4秒前
4秒前
4秒前
Bio应助科研通管家采纳,获得60
4秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
wanwan应助土豆很好吃采纳,获得10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992152
求助须知:如何正确求助?哪些是违规求助? 3533140
关于积分的说明 11261281
捐赠科研通 3272545
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809439