Enhancing Control Room Operator Decision Making

操作员(生物学) 控制(管理) 计算机科学 化学 人工智能 生物化学 转录因子 基因 抑制因子
作者
Joseph Mietkiewicz,Ammar N. Abbas,Chidera Winifred Amazu,Gabriele Baldissone,Anders Madsen,Micaela Demichela,Maria Chiara Leva
出处
期刊:Processes [MDPI AG]
卷期号:12 (2): 328-328
标识
DOI:10.3390/pr12020328
摘要

In the dynamic and complex environment of industrial control rooms, operators are often inundated with numerous tasks and alerts, leading to a state known as task overload. This condition can result in decision fatigue and increased reliance on cognitive biases, which may compromise the decision-making process. To mitigate these risks, the implementation of decision support systems (DSSs) is essential. These systems are designed to aid operators in making swift, well-informed decisions, especially when their judgment may be faltering. Our research presents an artificial intelligence (AI)-based framework utilizing dynamic influence diagrams and reinforcement learning to develop a powerful decision support system. The foundation of this AI framework is the creation of a robust, interpretable, and effective DSS that aids control room operators during critical process disturbances. By incorporating expert knowledge, the dynamic influence diagram provides a comprehensive model that captures the uncertainties inherent in complex industrial processes. It excels in anomaly detection and recommending optimal actions. Furthermore, this model is improved through a strategic collaboration with reinforcement learning, which refines the recommendations to be more context-specific and accurate. The primary goal of this AI framework is to equip operators with a live, reliable DSS that significantly enhances their response during process upsets. This paper describes the development of the AI framework and its implementation in a simulated control room environment. Our results show that the DSS can improve operator performance and reduce cognitive workload. However, it also uncovers a trade-off with situation awareness, which may decrease as operators become overly dependent on the system’s guidance. Our study highlights the necessity of balancing the advantages of decision support with the need to maintain operator engagement and understanding during process operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
廖明强发布了新的文献求助10
1秒前
XXHONG完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
科研通AI6应助羊羊得意采纳,获得10
4秒前
LXY应助科研通管家采纳,获得10
4秒前
LXY应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
buno应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
LXY应助科研通管家采纳,获得10
4秒前
buno应助科研通管家采纳,获得10
4秒前
吃饱饱完成签到 ,获得积分10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
buno应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
唐唯一发布了新的文献求助10
5秒前
5秒前
5秒前
拼搏草莓发布了新的文献求助10
5秒前
5秒前
刘兆亮完成签到,获得积分10
5秒前
5秒前
英姑应助FXQ123_范采纳,获得10
5秒前
XXHONG发布了新的文献求助30
5秒前
5秒前
大宝君发布了新的文献求助10
5秒前
科研通AI6应助过时的飞鸟采纳,获得10
5秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614862
求助须知:如何正确求助?哪些是违规求助? 4699807
关于积分的说明 14905197
捐赠科研通 4740557
什么是DOI,文献DOI怎么找? 2547802
邀请新用户注册赠送积分活动 1511593
关于科研通互助平台的介绍 1473715