Enhancing Control Room Operator Decision Making

操作员(生物学) 控制(管理) 计算机科学 化学 人工智能 生物化学 转录因子 基因 抑制因子
作者
Joseph Mietkiewicz,Ammar N. Abbas,Chidera Winifred Amazu,Gabriele Baldissone,Anders Madsen,Micaela Demichela,Maria Chiara Leva
出处
期刊:Processes [MDPI AG]
卷期号:12 (2): 328-328
标识
DOI:10.3390/pr12020328
摘要

In the dynamic and complex environment of industrial control rooms, operators are often inundated with numerous tasks and alerts, leading to a state known as task overload. This condition can result in decision fatigue and increased reliance on cognitive biases, which may compromise the decision-making process. To mitigate these risks, the implementation of decision support systems (DSSs) is essential. These systems are designed to aid operators in making swift, well-informed decisions, especially when their judgment may be faltering. Our research presents an artificial intelligence (AI)-based framework utilizing dynamic influence diagrams and reinforcement learning to develop a powerful decision support system. The foundation of this AI framework is the creation of a robust, interpretable, and effective DSS that aids control room operators during critical process disturbances. By incorporating expert knowledge, the dynamic influence diagram provides a comprehensive model that captures the uncertainties inherent in complex industrial processes. It excels in anomaly detection and recommending optimal actions. Furthermore, this model is improved through a strategic collaboration with reinforcement learning, which refines the recommendations to be more context-specific and accurate. The primary goal of this AI framework is to equip operators with a live, reliable DSS that significantly enhances their response during process upsets. This paper describes the development of the AI framework and its implementation in a simulated control room environment. Our results show that the DSS can improve operator performance and reduce cognitive workload. However, it also uncovers a trade-off with situation awareness, which may decrease as operators become overly dependent on the system’s guidance. Our study highlights the necessity of balancing the advantages of decision support with the need to maintain operator engagement and understanding during process operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
没食子酸完成签到,获得积分10
2秒前
3秒前
无极微光应助Jia采纳,获得20
4秒前
胡杨树2006完成签到,获得积分10
5秒前
fujun0095发布了新的文献求助10
6秒前
6秒前
6秒前
wxy发布了新的文献求助10
7秒前
zhaoyue完成签到 ,获得积分10
9秒前
科研狗的春天完成签到 ,获得积分10
10秒前
筷子夹豆腐脑完成签到,获得积分10
11秒前
11秒前
Jenny发布了新的文献求助10
12秒前
Estrella发布了新的文献求助10
12秒前
dandna完成签到 ,获得积分10
12秒前
晴心完成签到,获得积分10
16秒前
苹果鱼完成签到,获得积分10
17秒前
DD完成签到,获得积分10
17秒前
张二田发布了新的文献求助10
18秒前
tracer526发布了新的文献求助10
18秒前
萨尔莫斯发布了新的文献求助10
19秒前
24秒前
王佳俊完成签到,获得积分10
25秒前
25秒前
26秒前
Owen应助辜卅采纳,获得10
28秒前
28秒前
ding应助wxy采纳,获得10
34秒前
科研通AI6应助fujun0095采纳,获得10
40秒前
41秒前
萨尔莫斯发布了新的文献求助10
50秒前
50秒前
Minnie完成签到,获得积分10
51秒前
Jenny完成签到,获得积分20
54秒前
56秒前
背后的若之完成签到 ,获得积分10
57秒前
58秒前
58秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951