亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Control Room Operator Decision Making

操作员(生物学) 控制(管理) 计算机科学 化学 人工智能 生物化学 转录因子 基因 抑制因子
作者
Joseph Mietkiewicz,Ammar N. Abbas,Chidera Winifred Amazu,Gabriele Baldissone,Anders Madsen,Micaela Demichela,Maria Chiara Leva
出处
期刊:Processes [MDPI AG]
卷期号:12 (2): 328-328
标识
DOI:10.3390/pr12020328
摘要

In the dynamic and complex environment of industrial control rooms, operators are often inundated with numerous tasks and alerts, leading to a state known as task overload. This condition can result in decision fatigue and increased reliance on cognitive biases, which may compromise the decision-making process. To mitigate these risks, the implementation of decision support systems (DSSs) is essential. These systems are designed to aid operators in making swift, well-informed decisions, especially when their judgment may be faltering. Our research presents an artificial intelligence (AI)-based framework utilizing dynamic influence diagrams and reinforcement learning to develop a powerful decision support system. The foundation of this AI framework is the creation of a robust, interpretable, and effective DSS that aids control room operators during critical process disturbances. By incorporating expert knowledge, the dynamic influence diagram provides a comprehensive model that captures the uncertainties inherent in complex industrial processes. It excels in anomaly detection and recommending optimal actions. Furthermore, this model is improved through a strategic collaboration with reinforcement learning, which refines the recommendations to be more context-specific and accurate. The primary goal of this AI framework is to equip operators with a live, reliable DSS that significantly enhances their response during process upsets. This paper describes the development of the AI framework and its implementation in a simulated control room environment. Our results show that the DSS can improve operator performance and reduce cognitive workload. However, it also uncovers a trade-off with situation awareness, which may decrease as operators become overly dependent on the system’s guidance. Our study highlights the necessity of balancing the advantages of decision support with the need to maintain operator engagement and understanding during process operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
优美香露发布了新的文献求助80
5秒前
5秒前
酷炫翠柏发布了新的文献求助10
9秒前
万能图书馆应助tuyfytjt采纳,获得10
13秒前
小丸子和zz完成签到 ,获得积分10
24秒前
25秒前
asd1576562308完成签到 ,获得积分10
28秒前
tuyfytjt发布了新的文献求助10
31秒前
yhw完成签到,获得积分10
43秒前
meow完成签到 ,获得积分10
48秒前
科研通AI2S应助酷炫翠柏采纳,获得30
56秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
梵莫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
一二发布了新的文献求助10
1分钟前
无极微光应助Dyying采纳,获得20
1分钟前
XueXiTong完成签到,获得积分10
1分钟前
大刘发布了新的文献求助10
1分钟前
Bin_Liu发布了新的文献求助10
1分钟前
1分钟前
Orange应助凡华采纳,获得10
1分钟前
yang发布了新的文献求助10
1分钟前
大刘完成签到,获得积分10
2分钟前
Thanks完成签到 ,获得积分10
2分钟前
2分钟前
上官若男应助欣喜的广山采纳,获得10
2分钟前
duzhi完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
完美世界应助欣喜的广山采纳,获得10
3分钟前
凡华发布了新的文献求助10
3分钟前
完美世界应助cdragon采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657943
求助须知:如何正确求助?哪些是违规求助? 4814668
关于积分的说明 15080640
捐赠科研通 4816211
什么是DOI,文献DOI怎么找? 2577199
邀请新用户注册赠送积分活动 1532206
关于科研通互助平台的介绍 1490776