亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Promising Uses of Ionic Liquids on CarbonCarbon and CarbonNitrogen Bond Formations

碳纤维 氮气 债券 离子键合 离子液体 化学 化学工程 材料科学 有机化学 离子 工程类 业务 复合材料 催化作用 复合数 财务
作者
Sudeshna Kalita,Anup Singhania
标识
DOI:10.1002/9783527839520.ch5
摘要

Chapter 5 Promising Uses of Ionic Liquids on CarbonCarbon and CarbonNitrogen Bond Formations Sudeshna Kalita, Sudeshna Kalita Council of Scientific and Industrial Research–North East Institute of Science and Technology (CSIR–NEIST), Chemical Sciences and Technology Division, NH-37, Pulibor, Jorhat, Assam, 785006 India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002 IndiaSearch for more papers by this authorAnup Singhania, Anup Singhania Council of Scientific and Industrial Research–North East Institute of Science and Technology (CSIR–NEIST), Chemical Sciences and Technology Division, NH-37, Pulibor, Jorhat, Assam, 785006 India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002 IndiaSearch for more papers by this author Sudeshna Kalita, Sudeshna Kalita Council of Scientific and Industrial Research–North East Institute of Science and Technology (CSIR–NEIST), Chemical Sciences and Technology Division, NH-37, Pulibor, Jorhat, Assam, 785006 India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002 IndiaSearch for more papers by this authorAnup Singhania, Anup Singhania Council of Scientific and Industrial Research–North East Institute of Science and Technology (CSIR–NEIST), Chemical Sciences and Technology Division, NH-37, Pulibor, Jorhat, Assam, 785006 India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002 IndiaSearch for more papers by this author Book Editor(s):Pardeep Singh, Pardeep Singh University of Delhi, PGDAV College, New Delhi, IndiaSearch for more papers by this authorSanchayita Rajkhowa, Sanchayita Rajkhowa The Assam Royal Global University, Assam, IndiaSearch for more papers by this authorAnik Sen, Anik Sen GITAM, Andhra Pradesh, IndiaSearch for more papers by this authorJyotirmoy Sarma, Jyotirmoy Sarma The Assam Kaziranga University, Assam, IndiaSearch for more papers by this author First published: 29 December 2023 https://doi.org/10.1002/9783527839520.ch5 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Ionic liquids (ILs) have gained considerable attention in recent years due to their unique properties and potential applications in various fields of chemistry. In organic chemistry, ILs have found use as solvents for a broad range of reactions, including catalysis, electrochemistry, and organic synthesis. ILs are salts that are liquid at room temperature and have been shown to be effective in promoting chemical reactions by enhancing reaction rates, improving selectivity, and providing a more sustainable alternative to conventional organic solvents for a variety of carbon  carbon and carbon  nitrogen bond formation reactions. Additionally, they have been employed as stabilizing agents for nanoparticles and as templates for the synthesis of inorganic materials. This chapter presents an overview of recent advances in IL-based methodologies for various bond formation reactions, such as the Heck reaction, Suzuki coupling, aldol condensation, and multicomponent reactions. Furthermore, the chapter highlights the promising role of chiral and task-specific ILs in synthetic chemistry. References Ghandi , K. ( 2014 ). A review of ionic liquids, their limits and applications . Green Sustainable Chemistry 4 : 44 – 53 . 10.4236/gsc.2014.41008 CASGoogle Scholar Welton , T. ( 2018 ). Ionic liquids: a brief history . Biophysical Reviews 10 : 691 – 706 . 10.1007/s12551-018-0419-2 CASPubMedGoogle Scholar Davis , J.H. ( 2004 ). Task-specific ionic liquids . Chemistry Letters 33 : 1072 – 1077 . 10.1246/cl.2004.1072 CASWeb of Science®Google Scholar De Vos , N.D. et al. ( 2014 ). Electrochemical stability of ionic liquids: general influences and degradation mechanisms . ChemElectroChem 1 : 1258 – 1270 . 10.1002/celc.201402086 CASWeb of Science®Google Scholar Wang , B. et al. ( 2017 ). Are ionic liquids chemically stable . Chemical Reviews 117 : 7113 – 7131 . 10.1021/acs.chemrev.6b00594 CASPubMedWeb of Science®Google Scholar Cui , G. et al. ( 2016 ). Active chemisorption sites in functionalized ionic liquids for carbon capture . Chemical Society Reviews 45 : 4307 – 4339 . 10.1039/C5CS00462D CASPubMedWeb of Science®Google Scholar Yusuf , N.Y.M. et al. ( 2019 ). Impregnated carbon–ionic liquid as innovative adsorbent for H 2 /CO 2 separation from biohydrogen . International Journal of Hydrogen Energy 44 : 3414 – 3424 . 10.1016/j.ijhydene.2018.06.155 CASWeb of Science®Google Scholar Zhou , F. et al. ( 2009 ). Ionic liquid lubricants: designed chemistry for engineering applications . Chemical Society Reviews 38 : 2590 – 2599 . 10.1039/b817899m CASPubMedWeb of Science®Google Scholar Sun , X. et al. ( 2012 ). Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle . Chemical Reviews 112 : 2100 – 2128 . 10.1021/cr200193x CASPubMedWeb of Science®Google Scholar Jiahuan , T. et al. ( 2020 ). The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes . Frontiers in Chemistry 7 : 945 . 10.3389/fchem.2019.00945 PubMedWeb of Science®Google Scholar Qi , H. et al. ( 2020 ). High-voltage resistant ionic liquids for lithium-ion batteries . ACS Applied Materials & Interfaces 12 ( 1 ): 591 – 600 . 10.1021/acsami.9b16786 CASPubMedWeb of Science®Google Scholar Zhang , Q. and Shreeve , J.M. ( 2014 ). Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid . Chemistry Chemical Reviews 14 ( 20 ): 10527 – 10574 . 10.1021/cr500364t Google Scholar Adams , D.J. et al. ( 2004 ). Chemistry in Alternative Reaction Media . Chichester : John Wiley & Sons . Google Scholar Drabina , P. et al. ( 2017 ). Recent advances in C-C and C-N bond forming reactions catalysed by polystyrene-supported copper complexes . Molecules 22 ( 6 ): 865 . 10.3390/molecules22060865 PubMedWeb of Science®Google Scholar Rayadurgam , J. et al. ( 2021 ). Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020 . Organic Chemistry Frontiers 8 : 384 – 414 . 10.1039/D0QO01146K CASWeb of Science®Google Scholar Wassercheid , P. and Welton , T. ( 2008 ). Ionic Liquids in Synthesis , 2 e. New York, NY : Wiley-VCH . Google Scholar Giernoth , R. ( 2010 ). Task-specific ionic liquids . Angewandte Chemie International Edition in English 49 ( 16 ): 2834 – 2839 . 10.1002/anie.200905981 CASPubMedWeb of Science®Google Scholar Meijere , A. and Diederich , F. ( 2004 ). Metal-Catalyzed Cross-Coupling Reactions , 2 e. WILEY-VCH Verlag GmbH & Co. KGaA . 10.1002/9783527619535 Google Scholar Seechurn , J. et al. ( 2012 ). Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize . Angewandte Chemie International Edition 51 : 5062 – 5085 . 10.1002/anie.201107017 PubMedWeb of Science®Google Scholar Kanwal , I. et al. ( 2020 ). Palladium and copper catalyzed Sonogashira cross coupling an excellent methodology for C-C bond formation over 17 years: a review . Catalysts 10 ( 4 ): 443 . 10.3390/catal10040443 CASWeb of Science®Google Scholar Biffis , A. et al. ( 2018 ). Pd Metal Catalysts for cross-couplings and related reactions in the 21st century: a critical review . Chemical Reviews 118 : 2249 – 2295 . 10.1021/acs.chemrev.7b00443 CASPubMedWeb of Science®Google Scholar Amatore , C. et al. ( 1995 ). Evidence for the ligation of palladium(0) complexes by acetate ions: consequences on the mechanism of their oxidative addition with phenyl iodide and PhPd(OAc)(PPh 3 ) 2 as intermediate in the Heck reaction . Organometallics 14 ( 12 ): 5605 – 5614 . 10.1021/om00012a029 CASWeb of Science®Google Scholar Jeffery , T. ( 1996 ). On the efficiency of tetraalkylammonium salts in Heck type reactions . Tetrahedron 52 ( 30 ): 10113 – 10130 . 10.1016/0040-4020(96)00547-9 CASWeb of Science®Google Scholar Varnado , C.D. ( 2012 ). Condensation polymers via metal-catalyzed coupling reactions Chapter 5.08. In: Polymer Science: A Comprehensive Reference . Elsevier . 10.1016/B978-0-444-53349-4.00138-2 Google Scholar Kaufmann , D.E. et al. ( 1996 ). Molten salts as an efficient medium for palladium catalyzed C-C coupling reactions . Synlett 1996 ( 11 ): 1091 – 1092 . https://doi.org/10.1055/s-1996-5658 . 10.1055/s-1996-5658 Google Scholar Böhm , V.P.W. et al. ( 2000 ). Nonaqueous ionic liquids: superior reaction media for the catalytic Heck-vinylation of chloroarenes . Chemistry 6 ( 6 ): 1017 – 1025 . 10.1002/(SICI)1521-3765(20000317)6:6<1017::AID-CHEM1017>3.0.CO;2-8 CASPubMedWeb of Science®Google Scholar Bouquillon , S. et al. ( 2001 ). Heck arylation of allylic alcohols in molten salts . Journal of Organometallic Chemistry 634 ( 2 ): 153 – 156 . 10.1016/S0022-328X(01)01149-4 CASWeb of Science®Google Scholar Carmichael , A.J. et al. ( 1999 ). The Heck reaction in ionic liquids: a multiphasic catalyst system . Organic Letters 1 ( 7 ): 997 – 1000 . 10.1021/ol9907771 CASWeb of Science®Google Scholar Howarth , J. and Dallas , A. ( 2000 ). Moisture stable ambient temperature ionic liquids: solvents for the new millennium . 1. The Heck reaction. Molecules 5 : 851 – 855 . 10.3390/50600851 CASWeb of Science®Google Scholar Xu , L. et al. ( 2000 ). Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium . Organometallics 19 ( 6 ): 1123 – 1127 . 10.1021/om990956m CASWeb of Science®Google Scholar Yang , H. , Han , X. et al. ( 2009 ). N-Heterocyclic carbene palladium complex supported on ionic liquid-modified SBA-16: an efficient and highly recyclable catalyst for the Suzuki and Heck reactions . Green Chemistry 11 ( 8 ): 1184 – 1193 . 10.1039/b904136b CASWeb of Science®Google Scholar Csabai , P. and Joó , F. ( 2004 ). Synthesis and catalytic properties of new water-soluble ruthenium(II)−N-heterocyclic carbene complexes . Organometallics 23 ( 23 ): 5640 – 5643 . 10.1021/om049511a CASWeb of Science®Google Scholar Pégot , B. et al. ( 2004 ). First application of chiral ionic liquids in asymmetric Baylis–Hillman reaction . Tetrahedron Letters 45 ( 34 ): 6425 – 6428 . 10.1016/j.tetlet.2004.06.134 CASWeb of Science®Google Scholar Morel , A. et al. ( 2013 ). Palladium-catalyzed asymmetric Heck arylation of 2,3-dihydrofuran – effect of prolinate salts . Dalton Transaction 42 : 1215 – 1222 . 10.1039/C2DT31672B CASPubMedWeb of Science®Google Scholar Ahrens , S. et al. ( 2009 ). Tunable aryl alkyl ionic liquids (TAAILs): the next generation of ionic liquids . Angewandte Chemie International Edition In English 48 ( 42 ): 7908 – 7910 . 10.1002/anie.200903399 CASPubMedWeb of Science®Google Scholar Lerch , S. et al. ( 2022 ). The Mizoroki-Heck reaction in tunable aryl alkyl ionic liquids . European Journal of Organic Chemistry 2022 ( 6 ): e202200008 . 10.1002/ejoc.202200008 CASWeb of Science®Google Scholar Prechtl , M.H.G. et al. ( 2010 ). Carbon-carbon cross coupling reactions in ionic liquids catalysed by palladium metal nanoparticles . Molecules 15 : 3441 – 3461 . 10.3390/molecules15053441 CASPubMedWeb of Science®Google Scholar Cotugno , P. et al. ( 2014 ). Suzuki coupling of iodo and bromoarenes catalyzed by chitosan-supported Pd-nanoparticles in ionic liquids . Journal of Organometallic Chemistry 752 ( 30 ): 1 – 5 . 10.1016/j.jorganchem.2013.11.033 CASGoogle Scholar Hajipour , A.R. and Malek , S.S. ( 2021 ). Magnetic chitosan-functionalized cobalt-NHC: synthesis, characterization and catalytic activity toward Suzuki and Sonogashira cross-coupling reactions of aryl chlorides . Molecular Catalysis 508 : 111573 . 10.1016/j.mcat.2021.111573 CASWeb of Science®Google Scholar Deshmukh , R.R. et al. ( 2001 ). Ultrasound promoted C-C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids . Chemical Communications 17 : 1544 – 1545 . 10.1039/b104532f CASWeb of Science®Google Scholar Monopolia , A. et al. ( 2022 ). A new expeditious synthesis of the core scaffold of salvianolic acid F through a one-pot sequential Heck coupling catalyzed by palladium nanoparticles in ionic liquids . Journal of Organometallic Chemistry 958 : 122193 . 10.1016/j.jorganchem.2021.122193 Web of Science®Google Scholar Tang , S. et al. ( 2012 ). Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications . Chemical Society Reviews 41 : 4030 – 4066 . 10.1039/c2cs15362a CASPubMedWeb of Science®Google Scholar Patil , J.D. et al. ( 2015 ). Dual functionalized task specific ionic liquid promoted in situ generation of palladium nanoparticles in water: synergic catalytic system for Suzuki–Miyaura cross coupling . RSC Advances 5 : 79061 . 10.1039/C5RA17186E CASWeb of Science®Google Scholar Yang , X. et al. ( 2008 ). Palladium nanoparticles stabilized by an ionic polymer and ionic liquid: a versatile system for C−C cross-coupling reactions . Inorganic Chemistry 47 ( 8 ): 3292 – 3297 . 10.1021/ic702305t CASPubMedWeb of Science®Google Scholar Zhao , D. et al. ( 2006 ). A strategy for the synthesis of transition-metal nanoparticles and their transfer between liquid phases . Small 2 : 879 – 883 . 10.1002/smll.200500317 CASPubMedWeb of Science®Google Scholar Ghazali-Esfahani , S. et al. ( 2016 ). A simple catalyst for aqueous phase Suzuki reactions based on palladium nanoparticles immobilized on an ionic polymer . Science China Chemistry 59 ( 4 ): 482 – 486 . 10.1007/s11426-015-5542-3 CASWeb of Science®Google Scholar Zou , G. et al. ( 2003 ). Developing an ionic medium for ligandless-palladium-catalyzed Suzuki and Heck couplings . Journal of Molecular Catalysis A: Chemical 206 : 193 – 198 . 10.1016/S1381-1169(03)00428-X CASWeb of Science®Google Scholar Calo , V. et al. ( 2005 ). Pd nanoparticles as efficient catalysts for Suzuki and Stille coupling reactions of aryl halides in ionic liquids . Journal of Organic Chemistry 70 : 6040 – 6044 . 10.1021/jo050801q CASPubMedWeb of Science®Google Scholar Shaikh , N.M. et al. ( 2022 ). Highly active mixed Au–Pd nanoparticles supported on RHA silica through immobilised ionic liquid for Suzuki coupling reaction . Topics in Catalysis https://doi.org/10.1007/s11244-021-01547-5 . 10.1007/s11244?021?01547?5 Web of Science®Google Scholar Kusumawati , E.N. and Sasaki , T. ( 2019 ). Highly active and stable supported Pd catalysts on ionic liquid-functionalized SBA-15 for Suzuki-Miyaura and transfer hydrogenation reactions . Green Energy & Environment 4 ( 2 ): 180 – 189 . 10.1016/j.gee.2019.02.003 Google Scholar Tsunashima , K. and Sugiya , M. ( 2007 ). Physical and electrochemical properties of room temperature ionic liquids based on quaternary phosphonium cations . Electrochemistry 75 : 734 . 10.5796/electrochemistry.75.734 CASWeb of Science®Google Scholar Arkhipova , D.M. et al. ( 2021 ). Tri-tert-butyl(n-alkyl) phosphonium ionic liquids: structure, properties and application as hybrid catalyst nanomaterials . Sustainability 13 : 9862 . 10.3390/su13179862 CASWeb of Science®Google Scholar Fraser , K.J. and MacFarlane , D.R. ( 2009 ). Phosphonium-based ionic liquids: an overview . Australian Journal of Chemistry 62 : 309 – 321 . 10.1071/CH08558 CASWeb of Science®Google Scholar Arkhipova , D. et al. ( 2020 ). Effect of phosphonium ionic liquid/Pd ratio on the catalytic activity of palladium nanoparticles in Suzuki cross-coupling reaction . Journal of Organometallic Chemistry 923 : 121454 . 10.1016/j.jorganchem.2020.121454 CASWeb of Science®Google Scholar Harjani , J.R. et al. ( 2010 ). Sonogashira coupling reactions in biodegradable ionic liquids derived from nicotinic acid . Green Chemistry 12 : 650 – 655 . 10.1039/b919394d CASWeb of Science®Google Scholar Gazvoda , M. et al. ( 2018 ). Mechanism of copper-free Sonogashira reaction operates through palladium-palladium transmetallation . Nature Communications 9 : 4814 . 10.1038/s41467-018-07081-5 PubMedWeb of Science®Google Scholar Orha , L. et al. ( 2019 ). Palladium-catalyzed Sonogashira coupling reactions in γ-valerolactone-based ionic liquids . Beilstein Journal of Organic Chemistry 15 : 2907 – 2913 . 10.3762/bjoc.15.284 CASPubMedWeb of Science®Google Scholar Jung , D.-Y. et al. ( 2022 ). A facile protocol for copper-free palladium-catalyzed Sonogashira coupling in aqueous media . Bulletin of the Korean Chemical Society 43 ( 1 ): 110 . 10.1002/bkcs.12432 CASWeb of Science®Google Scholar Reddy , A.S. and Laali , K.K. ( 2015 ). Sonogashira cross-coupling in a designer ionic liquid (IL) without copper, external base, or additive, and with recycling and reuse of the IL . Tetrahedron Letters 56 : 4807 – 4810 . 10.1016/j.tetlet.2015.06.067 CASWeb of Science®Google Scholar Vitz , J. et al. ( 2007 ). Ionic liquid supported tin reagents for Stille cross coupling reactions . Green Chemistry 9 : 431 – 433 . 10.1039/b616218e CASWeb of Science®Google Scholar Faye , D. et al. ( 2013 ). Solvent free hydrostannation and Stille reactions using ionic liquid supported organotin reagents . ChemInform 44 : 5421 – 5425 . 10.1002/chin.201345035 Google Scholar Louaisil , N. et al. ( 2011 ). Ionic liquid supported organotin reagents: green tools for Stille cross-coupling reactions with brominated substrates . European Journal of Organic Chemistry 143 – 149 . 10.1002/ejoc.201001195 Web of Science®Google Scholar Premi , C. and Jain , N. ( 2013 ). Phosphane-free Hiyama cross-coupling of aryl and heteroaryl halides catalyzed by palladium nanoparticles in ionic liquids . European Journal of Organic Chemistry 2013 ( 24 ): 5493 – 5499 . 10.1002/ejoc.201300307 CASWeb of Science®Google Scholar Rostamnia , S. et al. ( 2015 ). Homoleptic chelating N-heterocyclic carbene complexes of palladium immobilized within the pores of SBA-15/IL (NHCPd@SBA-15/IL) as heterogeneous catalyst for Hiyama reaction . Journal of Organometallic Chemistry 791 : 18 – 23 . 10.1016/j.jorganchem.2015.05.019 CASWeb of Science®Google Scholar Jessop , P.G. ( 2011 ). Searching for green solvents . Green Chemistry 13 ( 6 ): 1391 – 1398 . 10.1039/c0gc00797h CASWeb of Science®Google Scholar Tukacs , J.M. et al. ( 2015 ). Direct asymmetric reduction of levulinic acid to gamma-valerolactone: synthesis of a chiral platform molecule . Green Chemistry 17 : 5189 – 5195 . 10.1039/C5GC01099C CASWeb of Science®Google Scholar Orha , L. et al. ( 2020 ). Tetrabutylphosphonium 4-ethoxyvalerate as a biomass-originated media for homogeneous palladium-catalyzed Hiyama coupling reactions . Chemical Papers 74 : 4593 – 4598 . 10.1007/s11696-020-01287-y CASWeb of Science®Google Scholar Qian , Y. et al. ( 2010 ). A green and efficient asymmetric aldol reaction catalyzed by a chiral anion modified ionic liquid . European Journal of Organic Chemistry 19 : 3672 – 3677 . 10.1002/ejoc.201000304 Google Scholar Hu , S. et al. ( 2007 ). Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions . Tetrahedron Letters 48 ( 32 ): 5613 – 5617 . 10.1016/j.tetlet.2007.06.051 CASWeb of Science®Google Scholar Lou , L.-L. ( 2015 ). Cinchona-derived prolinamide in Brønsted acidic ionic liquids: a novel and recyclable catalytic system for asymmetric aldol reaction . Catalysis Today 264 : 109 – 114 . 10.1016/j.cattod.2015.10.004 Web of Science®Google Scholar Hu , Y. et al. ( 2021 ). Metal- and solvent-free transesterification and aldol condensation reactions by a homogenous recyclable basic ionic liquid based on the 1,3,5-triazine framework . Chemistry Open 10 : 775 – 783 . 10.1002/open.202100091 CASGoogle Scholar Porcar , R. et al. ( 2021 ). Chiral imidazolium prolinate salts as efficient synzymatic organocatalysts for the asymmetric aldol reaction . Molecules 26 : 4190 . 10.3390/molecules26144190 CASPubMedWeb of Science®Google Scholar Dong , F. et al. ( 2008 ). Synthesis of chalcones via Claisen–Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids . Catalysis Communications 9 : 1924 – 1927 . 10.1016/j.catcom.2008.03.023 CASWeb of Science®Google Scholar Ispán , D. et al. ( 2021 ). Claisen-Schmidt condensation and domino Claisen-Schmidt condensation – Michael addition of 16-formyl steroids in the presence of switchable polarity solvents . Chemistry Select 6 : 5705 – 5710 . 10.1002/slct.202100886 CASGoogle Scholar Jadhav , A.H. et al. ( 2018 ). Tailoring and exploring the basicity of magnesium oxide nanostructures in ionic liquids for Claisen-Schmidt condensation reaction . Energy 160 : 635 – 647 . 10.1016/j.energy.2018.07.036 CASWeb of Science®Google Scholar Xinyu , L. et al. ( 2019 ). Ionic liquids catalyzed Friedel–Crafts alkylation of substituted benzenes with CCl4 toward trichloromethylarenes . Catalysis Letters 149 : 665 – 671 . 10.1007/s10562-018-2633-8 Web of Science®Google Scholar Yang , C.-H. et al. ( 2019 ). Novel aryl-imidazolium ionic liquids with dual Brønsted/Lewis acidity as both solvents and catalysts for Friedel–Crafts alkylation . Applied Sciences 9 : 4743 . 10.3390/app9224743 CASGoogle Scholar Aalam , M.J. et al. ( 2022 ). DABCO-based chiral ionic liquids as recoverable and reusable organocatalyst for asymmetric Diels–Alder reaction . Chirality 34 : 134 – 146 . 10.1002/chir.23385 CASPubMedWeb of Science®Google Scholar Yang , R.-Y. ( 2018 ). HOAc-mediated domino Diels−Alder reaction for synthesis of spiro[cyclohexane-1,3′-indolines] in ionic liquid [Bmim]Br . ACS Omega 3 : 5406 – 5416 . 10.1021/acsomega.8b00464 CASPubMedWeb of Science®Google Scholar Soffietti , J.B. et al. ( 2019 ). Aqueous micellar systems formed by surfactant ionic liquids. application in Diels-Alder reactions . Multidisciplinary Digital Publishing Institute Proceedings 41 ( 1 ): 72 . Google Scholar Soffietti , J.B. et al. ( 2021 ). Comparative study of the effects of aqueous micellar media formed by amphiphilic ionic liquids and conventional surfactants on reactions of synthetic interest . Chemical Proceedings 3 : 8338 . Google Scholar Keithellakpam , S. and Laitonjam , W.S. ( 2016 ). Henry reaction catalyzed by recyclable [C 4 dabco]OH ionic liquid . Indian Journal of Chemistry 55B : 110 . CASGoogle Scholar Ying , A. et al. ( 2014 ). Novel multiple-acidic ionic liquids: catalysts for environmentally friendly benign synthesis of trans-β-nitrostyrenes under solvent-free conditions . Industrial & Engineering Chemistry Research 53 : 547 – 552 . 10.1021/ie403372n CASWeb of Science®Google Scholar Wu , H. et al. ( 2008 ). An efficient protocol for Henry reaction using basic ionic liquid [bmIm]OH as catalyst and reaction medium . Letters in Organic Chemistry 5 : 209 – 211 . 10.2174/157017808783955817 CASWeb of Science®Google Scholar Kragl , U. et al. ( 2015 ). Preparation of poly(ionic liquid)s-supported recyclable organocatalysts for the asymmetric nitroaldol (Henry) reaction chemistry . European Journal 21 : 18957 – 18960 . 10.1002/chem.201504290 PubMedWeb of Science®Google Scholar Chen , M. et al. ( 2021 ). Construction of pyridine-based chiral ionic covalent organic frameworks as a heterogeneous catalyst for promoting asymmetric Henry reactions . Organic Letters 23 : 1748 – 1752 . 10.1021/acs.orglett.1c00175 CASPubMedWeb of Science®Google Scholar Jagadale , M. et al. ( 2018 ). An ionic liquid gel: a heterogeneous catalyst for Erlenmeyer–Plochl and Henry reactions . New Journal of Chemistry 42 : 10993 – 11005 . 10.1039/C8NJ00367J CASWeb of Science®Google Scholar Audic , N. et al. ( 2003 ). An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids . Journal of the American Chemical Society 125 ( 31 ): 9248 – 9249 . 10.1021/ja021484x CASPubMedWeb of Science®Google Scholar Queval , P. et al. ( 2014 ). Olefin Metathesis in Ionic Liquids . John Wiley & Sons . 10.1002/9781118711613.ch24 Google Scholar Kerru , N. et al. ( 2020 ). A review on recent advances in nitrogen-containing molecules and their biological applications . Molecules 25 ( 8 ): 1909 . 10.3390/molecules25081909 CASPubMedWeb of Science®Google Scholar Mermera , A. et al. ( 2021 ). Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: a review . Bioorganic Chemistry 114 : 105076 . 10.1016/j.bioorg.2021.105076 PubMedWeb of Science®Google Scholar Bariwalab , J. and Eycken , E.V.d. ( 2013 ). C–N bond forming cross-coupling reactions: an overview . Chemical Society Reviews 42 : 9283 – 9303 . 10.1039/c3cs60228a CASPubMedWeb of Science®Google Scholar Dysona , P.J. and Jessop , P.G. ( 2016 ). Solvent effects in catalysis: rational improvements of catalysts via manipulation of solvent interactions . Catalysis Science and Technology 6 : 3302 – 3316 . 10.1039/C5CY02197A Web of Science®Google Scholar Wasserscheid , P. and Welton , T. ( 2007 ). Ionic Liquids in Synthesis , 2 e. Weinheim : Wiley-VCH Verlag GmbH & Co. 10.1002/9783527621194 Google Scholar Moosavifar , M. ( 2012 ). An appropriate one-pot synthesis of dihydropyrimidinones catalyzed by heteropoly acid supported on zeolite: an efficient and reusable catalyst for the Biginelli reaction . Comptes Rendus Chimie 15 : 444 – 447 . 10.1016/j.crci.2011.11.015 CASWeb of Science®Google Scholar Ramos , L.M. et al. ( 2012 ). Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents . Journal of Organic Chemistry 77 : 10184 – 10193 . 10.1021/jo301806n CASPubMedWeb of Science®Google Scholar Sharma , N. et al. ( 2012 ). Green and recyclable glycine nitrate (GlyNO 3 ) ionic liquid triggered multicomponent Biginelli reaction for the efficient synthesis of dihydropyrimidinones . RSC Advances 2 : 10648 – 10651 . 10.1039/c2ra22037g CASWeb of Science®Google Scholar Liu , Z. et al. ( 2016 ). New efficient synthesis of 3,4-dihydropyrimidin-2(1 H )-ones catalyzed by benzotriazolium-based ionic liquids under solvent-free conditions . Molecules 21 ( 4 ): 462 . 10.3390/molecules21040462 PubMedWeb of Science®Google Scholar Zhang , Y. et al. ( 2015 ). An efficient synthesis of 3,4-dihydropyrimidin-2(1 H )-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions . Molecules 20 : 3811 – 3820 . 10.3390/molecules20033811 CASPubMedWeb of Science®Google Scholar Kandasamy , E. ( 2015 ). Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction . Journal of Chemical Sciences 127 : 1539 – 1545 . 10.1007/s12039-015-0919-6 Web of Science®Google Scholar Gui , J. et al. ( 2009 ). One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by acidic ionic liquids under solvent-free conditions . Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry 39 : 3436 – 3443 . 10.1080/00397910902774042 CASWeb of Science®Google Scholar Pourjavadi , A. et al. ( 2012 ). Crosslinked poly(ionic liquid) as high loaded dual acidic organocatalyst . Journal of Molecular Catalysis A: Chemical 365 : 55 – 59 . 10.1016/j.molcata.2012.08.008 CASWeb of Science®Google Scholar Khiratkar , A.G. et al. ( 2016 ). Polymer-supported benzimidazolium based ionic liquid: an efficient and reusable Brønsted acid catalyst for Biginelli reaction . RSC Advances 6 : 105087 – 105093 . 10.1039/C6RA23781A CASWeb of Science®Google Scholar Jadhav , C.K. et al. ( 2019 ). Efficient rapid access to Biginelli for the multicomponent synthesis of 1,2,3,4-Tetrahydropyrimidines in room-temperature diisopropyl ethyl ammonium acetate . ACS Omega 4 ( 27 ): 22313 – 22324 . 10.1021/acsomega.9b02286 CASPubMedWeb of Science®Google Scholar Yao , B.-J. et al. ( 2021 ). Sulfonic acid and ionic liquid functionalized covalent organic framework for efficient catalysis of the Biginelli reaction . The Journal of Organic Chemistry 86 ( 3 ): 3024 – 3032 . 10.1021/acs.joc.0c02423 CASPubMedWeb of Science®Google Scholar Davanagere , P.M. and Maiti , B. ( 2021 ). 1,3-Bis(carboxymethyl)imidazolium chloride as a sustainable, recyclable, and metal-free ionic catalyst for the Biginelli multicomponent reaction in neat condition . ACS Omega 6 : 26035 – 26047 . 10.1021/acsomega.1c02976 PubMedWeb of Science®Google Scholar Favier , I. et al. ( 2011 ). Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid . Chemical Communications 47 : 7869 – 7871 . 10.1039/c1cc12157j CASPubMedWeb of Science®Google Scholar Pastor , I.M. et al. ( 2018 ). 1,3-Bis(carboxymethyl)imidazolium chloride as a metal-free and recyclable catalyst for the synthesis of N-allylanilines by allylic substitution of alcohols . ACS Sustainable Chemistry & Engineering 6 : 14063 – 14070 . 10.1021/acssuschemeng.8b02614 Web of Science®Google Scholar Albert-Soriano , M. and Pastor , I.M. ( 2020 ). Anion-dependent imidazolium-based catalysts for allylation of aniline with tunable regioselectivity . Advanced Synthesis and Catalysis 362 : 2494 – 2502 . 10.1002/adsc.202000102 CASWeb of Science®Google Scholar Qian , Y. et al. ( 2008 ). A mild and efficient procedure for asymmetric Michael additions of cyclohexanone to chalcones catalyzed by an amino acid ionic liquid . Tetrahedron: Asymmetry 19 : 1515 – 1518 . 10.1016/j.tetasy.2008.06.022 CASWeb of Science®Google Scholar Zheng , X. et al. ( 2010 ). 2-Pyrrolidinecarboxylic acid ionic liquid as a highly efficient organocatalyst for the asymmetric one-pot Mannich reaction . European Journal of Organic Chemistry 515 – 522 . 10.1002/ejoc.200901088 Web of Science®Google Scholar Karimi , B. et al. ( 2018 ). Ionic liquids in asymmetric synthesis: an overall view from reaction media to supported ionic liquid catalysis . ChemCatChem 10 : 3173 . 10.1002/cctc.201701919 CASWeb of Science®Google Scholar Miao , W. and Chan , T.H. ( 2006 ). Ionic-liquid-supported organocatalyst: efficient and recyclable ionic-liquid-anchored proline for asymmetric aldol reaction . Advanced Synthesis & Catalysis 348 : 1711 . 10.1002/adsc.200606059 CASWeb of Science®Google Scholar Davanagere , P.M. and Maiti , B. ( 2021 ). Bifunctional C 2 -symmetric ionic liquid-supported ( S )-proline as a recyclable organocatalyst for Mannich reactions in neat condition . Results in Chemistry 3 : 100152 . 10.1016/j.rechem.2021.100152 CASGoogle Scholar Alper , E. and Orhan , O.Y. ( 2017 ). CO 2 utilization: developments in conversion processes . Petroleum 3 : 109 – 126 . 10.1016/j.petlm.2016.11.003 Google Scholar Yoshida , Y. et al. ( 1989 ). Novel synthesis of carbamate ester from carbon dioxide, amines, and alkyl halides . Bulletin of the Chemical Society of Japan 62 : 1534 – 1538 . 10.1246/bcsj.62.1534 CASWeb of Science®Google Scholar Feroci , M. et al. ( 2007 ). Electrochemically promoted C-N bond formation from amines and CO2 in ionic liquid BMIm-BF4: synthesis of carbamates . Journal of Organic Chemistry 72 : 200 – 203 . 10.1021/jo061997c CASPubMedWeb of Science®Google Scholar Li , R. et al. ( 2019 ). Selective synthesis of formamides, 1,2-bis(N-heterocyclic) ethanes and methylamines from cyclic amines and CO 2 /H 2 catalyzed by an ionic liquid–Pd/C system . Chemical Science 10 : 9822 . 10.1039/C9SC03242H CASPubMedWeb of Science®Google Scholar Kotrusz , P. et al. ( 2005 ). Enantioselective organocatalysis in ionic liquids: addition of aliphatic aldehydes and ketones to diethyl azodicarboxylate . European Journal of Organic Chemistry 4904 – 4911 . 10.1002/ejoc.200500481 Web of Science®Google Scholar Mandai , T. et al. ( 2019 ). Solvate ionic liquids for Li, Na, K, and Mg batteries . The Chemical Record 19 : 708 . 10.1002/tcr.201800111 CASPubMedWeb of Science®Google Scholar Eyckensa , D.J. and Henderson , L.C. ( 2017 ). Synthesis of α-aminophosphonates using solvate ionic liquids . RSC Advances 7 : 27900 – 27904 . 10.1039/C7RA04407K Web of Science®Google Scholar Sun , W. et al. ( 2003 ). Synthesis of aziridines from imines and ethyl diazoacetate in room temperature ionic liquids . Tetrahedron Letters 44 : 2409 – 2411 . 10.1016/S0040-4039(03)00185-0 CASWeb of Science®Google Scholar Frizzo , C.P. et al. ( 2009 ). Ionic liquid effects on the reaction of β-enaminones and tert-butylhydrazine and applications for the synthesis of pyrazoles . Catalysis Communications 10 : 1967 – 1970 . 10.1016/j.catcom.2009.07.005 CASWeb of Science®Google Scholar Hou , R.-S. et al. ( 2004 ). Synthesis of imidazo[2,1-a]isoquinolines from α-tosyloxyketones and 1-aminoisoquinoline in ionic liquid solvent . Journal of the Chinese Chemical Society 51 : 1417 – 1142 . 10.1002/jccs.200400208 CASWeb of Science®Google Scholar Wang , B. et al. ( 2004 ). Pyrrole synthesis in ionic liquids by Paal–Knorr condensation under mild conditions . Tetrahedron Letters 45 : 3417 – 3419 . 10.1016/j.tetlet.2004.03.012 CASWeb of Science®Google Scholar Zhang , Y. et al. ( 2018 ). An environmentally friendly approach to the green synthesis of azo dyes with aryltriazenes via ionic liquid promoted C-N bonds formation . Dyes and Pigments 158 : 438 – 444 . 10.1016/j.dyepig.2018.05.073 CASWeb of Science®Google Scholar Pore , D.M. ( 2022 ). An efficient Brønsted acid ionic liquid catalyzed synthesis of novel spiro1,2,4-triazolidine-5-thiones and their photoluminescence study . Journal of Molecular Structure 1249 : 131528 . 10.1016/j.molstruc.2021.131528 Web of Science®Google Scholar Gill , C. et al. ( 2021 ). Triethylammonium hydrogen sulfate [Et 3 NH][HSO 4 ]-catalyzed rapid and efficient multicomponent synthesis of pyrido[2,3-d]pyrimidine and pyrazolo[3,4-b]pyridine hybrids . ACS Omega 6 : 18215 – 18225 . 10.1021/acsomega.1c02093 PubMedWeb of Science®Google Scholar Gill , C.H. et al. ( 2021 ). Room temperature IL promoted improved and rapid synthesis of highly functionalized imidazole and evaluation of their inhibitory activity against human cancer cells . Journal of the Chinese Chemical Society 68 : 1067 – 1081 . 10.1002/jccs.202000468 Web of Science®Google Scholar Gill , C.H. et al. ( 2021 ). Microwave-assisted chemistry: new synthetic application for the rapid construction of 1 H -pyrazolo [1,2- b ] phthalazine-5,10-dione derivatives in diisopropyl ethyl ammonium acetate . Polycyclic Aromatic Compounds 43 ( 1 ): 895 – 914 . Web of Science®Google Scholar Ni , B. et al. ( 2017 ). Functionalized chiral ionic liquid as recyclable organocatalyst for asymmetric Michael addition to nitrostyrene . Green Chemistry 9 : 737 – 739 . 10.1039/b702081c Google Scholar Xu , D.-Z. et al. ( 2010 ). Chiral quaternary alkylammonium ionic liquid [Pro-dabco][BF 4 ]: as a recyclable and highly efficient organocatalyst for asymmetric Michael addition reactions . Tetrahedron: Asymmetry 21 : 2530 – 2534 . 10.1016/j.tetasy.2010.10.009 CASWeb of Science®Google Scholar Yu , F.-L. et al. ( 2013 ). Imidazolium chiral ionic liquid derived carbene-catalyzed conjugate umpolung for synthesis of γ-butyrolactones . RSC Advances 3 : 3996 – 4000 . 10.1039/c3ra40211h CASWeb of Science®Google Scholar Xu , D. et al. ( 2016 ). Ionic liquid [Dabco-H][AcO] as a highly efficient and recyclable catalyst for the synthesis of various bisenol derivatives via domino Knoevenagel–Michael reaction in aqueous media . RSC Advances 6 : 99656 – 99663 . 10.1039/C6RA23018K Web of Science®Google Scholar Basirat , N. et al. ( 2020 ). Ionic liquid-catalyzed synthesis of triazoloquinazolinones, chromeno[4,3- d ]benzothiazolopyrimidines and benzoimidazopyrimidine derivatives . Research on Chemical Intermediates 46 ( 6 ): 3263 – 3275 . 10.1007/s11164-020-04151-6 CASWeb of Science®Google Scholar Rostovtsev , V.V. et al. ( 2002 ). Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes . Angewandte Chemie International Edition 41 : 2596 – 2599 . 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 CASPubMedWeb of Science®Google Scholar Qin , A. et al. ( 2010 ). Click polymerization . Chemical Society Review 39 : 2522 – 2544 . 10.1039/b909064a CASPubMedWeb of Science®Google Scholar Tang , B.Z. et al. ( 2020 ). Copper-based ionic liquid-catalyzed click polymerization of diazides and diynes toward functional polytriazoles for sensing applications . Polymer Chemistry 11 : 2006 – 2014 . 10.1039/C9PY01443H Web of Science®Google Scholar Jadhav , C.K. et al. ( 2020 ). Ionic liquid catalyzed one-pot multi-component synthesis of fused pyridine derivatives: a strategy for green and sustainable chemistry . Journal of Heterocyclic Chemistry 57 : 4291 – 4303 . 10.1002/jhet.4135 CASWeb of Science®Google Scholar Handbook of Ionic Liquids: Fundamentals, Applications, and Sustainability ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
Huong完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
15秒前
18秒前
量子星尘发布了新的文献求助10
22秒前
任我行发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
45秒前
量子星尘发布了新的文献求助10
54秒前
平常易烟完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助blenx采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI5应助Faint_Dream采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
李爱国应助我为科研狂采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
Faint_Dream发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小憨憨完成签到 ,获得积分10
4分钟前
Faint_Dream完成签到,获得积分10
4分钟前
研友_VZG7GZ应助Omni采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Zzz_Carlos完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
我为科研狂完成签到,获得积分10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660994
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743994
捐赠科研通 2931798
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503