Early Diagnosing and Transformation Prediction of Alzheimer’s Disease Using Multi-Scaled Self-Attention Network on Structural MRI Images with Occlusion Sensitivity Analysis

人工智能 认知障碍 神经影像学 模式识别(心理学) 计算机科学 神经科学 认知 心理学
作者
Xinxin Fan,Haining Li,Lin Liu,Kai Zhang,Zhewei Zhang,Yi Chen,Zhen Wang,Xiaoli He,Jinping Xu,Qingmao Hu
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:97 (2): 909-926
标识
DOI:10.3233/jad-230705
摘要

Background: Structural magnetic resonance imaging (sMRI) is vital for early Alzheimer’s disease (AD) diagnosis, though confirming specific biomarkers remains challenging. Our proposed Multi-Scale Self-Attention Network (MUSAN) enhances classification of cognitively normal (CN) and AD individuals, distinguishing stable (sMCI) from progressive mild cognitive impairment (pMCI). Objective: This study leverages AD structural atrophy properties to achieve precise AD classification, combining different scales of brain region features. The ultimate goal is an interpretable algorithm for this method. Methods: The MUSAN takes whole-brain sMRI as input, enabling automatic extraction of brain region features and modeling of correlations between different scales of brain regions, and achieves personalized disease interpretation of brain regions. Furthermore, we also employed an occlusion sensitivity algorithm to localize and visualize brain regions sensitive to disease. Results: Our method is applied to ADNI-1, ADNI-2, and ADNI-3, and achieves high performance on the classification of CN from AD with accuracy (0.93), specificity (0.82), sensitivity (0.96), and area under curve (AUC) (0.95), as well as notable performance on the distinguish of sMCI from pMCI with accuracy (0.85), specificity (0.84), sensitivity (0.74), and AUC (0.86). Our sensitivity masking algorithm identified key regions in distinguishing CN from AD: hippocampus, amygdala, and vermis. Moreover, cingulum, pallidum, and inferior frontal gyrus are crucial for sMCI and pMCI discrimination. These discoveries align with existing literature, confirming the dependability of our model in AD research. Conclusion: Our method provides an effective AD diagnostic and conversion prediction method. The occlusion sensitivity algorithm enhances deep learning interpretability, bolstering AD research reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晏清完成签到 ,获得积分10
2秒前
中午发布了新的文献求助10
3秒前
酷炫芝麻发布了新的文献求助10
3秒前
单纯乘风发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
研友_GZb9an完成签到,获得积分10
4秒前
智慧者完成签到,获得积分10
5秒前
5秒前
5秒前
张东方发布了新的文献求助10
6秒前
carbon-dots发布了新的文献求助10
6秒前
DLDL发布了新的文献求助10
8秒前
9秒前
哈哈哈发布了新的文献求助10
10秒前
11秒前
直率向薇发布了新的文献求助10
12秒前
Jasper应助我爱达不溜采纳,获得10
12秒前
沙一汀绯闻女友完成签到,获得积分10
13秒前
cindyyunjie完成签到,获得积分10
13秒前
aka发布了新的文献求助10
14秒前
15秒前
虚拟的振家完成签到,获得积分10
17秒前
小赵过来一下完成签到,获得积分10
17秒前
DR发布了新的文献求助10
20秒前
20秒前
zhang完成签到,获得积分10
21秒前
21秒前
今后应助cc采纳,获得10
22秒前
酷炫芝麻完成签到,获得积分10
22秒前
26秒前
27秒前
zhang发布了新的文献求助10
28秒前
杨森omg发布了新的文献求助10
28秒前
cui完成签到,获得积分10
29秒前
杰king发布了新的文献求助10
34秒前
顾矜应助flysky120采纳,获得10
34秒前
sdvsd完成签到,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102