化学
两亲性
光动力疗法
单线态氧
乙二醇
丙烯酸乙酯
活性氧
光敏剂
甲基丙烯酸酯
肿瘤缺氧
丙烯酸酯
氧气
细胞毒性
组合化学
光化学
单体
有机化学
共聚物
生物化学
体外
聚合物
内科学
放射治疗
医学
作者
Jun-an Zhang,David M. Haddleton,Paul Wilson,Linhua Zhu,Chun-yan Dai,Linlu Zhao
标识
DOI:10.1021/acs.bioconjchem.4c00029
摘要
Photodynamic therapy (PDT) is a cancer treatment strategy that utilizes photosensitizers to convert oxygen within tumors into reactive singlet oxygen (1O2) to lyse tumor cells. Nevertheless, pre-existing tumor hypoxia and oxygen consumption during PDT can lead to an insufficient oxygen supply, potentially reducing the photodynamic efficacy. In response to this issue, we have devised a pH-responsive amphiphilic triblock fluorinated polymer (PDP) using copper-mediated RDRP. This polymer, composed of poly(ethylene glycol) methyl ether acrylate, 2-(diethylamino)ethyl methacrylate, and (perfluorooctyl)ethyl acrylate, self-assembles in an aqueous environment. Oxygen, chlorine e6 (Ce6), and doxorubicin (DOX) can be codelivered efficiently by PDP. The incorporation of perfluorocarbon into the formulation enhances the oxygen-carrying capacity of PDP, consequently extending the lifetime of 1O2. This increased lifetime, in turn, amplifies the PDT effect and escalates the cellular cytotoxicity. Compared with PDT alone, PDP@Ce6-DOX-O2 NPs demonstrated significant inhibition of tumor growth. This study proposes a novel strategy for enhancing the efficacy of PDT.
科研通智能强力驱动
Strongly Powered by AbleSci AI