Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data

遥感 环境科学 甲烷 估计 计算机科学 气象学 地质学 工程类 生态学 生物 物理 系统工程
作者
Ke Li,Kaixu Bai,Penglong Jiao,He Chen,Huiqun He,Liuqing Shao,Yibing Sun,Zhe Zheng,Ruijie Li,Ni‐Bin Chang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:304: 114039-114039 被引量:2
标识
DOI:10.1016/j.rse.2024.114039
摘要

Accurate monitoring of atmospheric methane concentration (XCH4) is relevant to improving carbon accounting and climate change attribution. Nevertheless, the commonly used full-physics carbon retrieval algorithm suffers from intensive computing burden and many algorithmic constraints. Aiming at providing a more efficient solution to advance global methane mapping, a novel XCH4 retrieval algorithm for monitoring atmospheric methane, that is, the UNbiased methane estimation with the aid of MAchine learning and MultiObjective programming (UNMAMO), was introduced. By taking advantage of a multiobjective programming approach, TROPOMI bands with apparent methane absorption features were first pinpointed via radiative transfer simulations, and band ratios were then calculated between methane sensitive and adjacent insensitive bands to enhance methane signal-to-noise ratio. Machine-learned prediction models were subsequently established using random forest by taking GOSAT XCH4 retrievals as the learning target with TROPOMI band ratios as the critical proxy variables. For demonstration, global XCH4 was mapped on a daily basis in 2021 with a grid resolution of 0.05°. The validation results confirmed a better agreement of our XCH4 retrievals than the operational TROPOMI XCH4 product with ground-based TCCON methane observations, with a correlation coefficient of 0.91 and root mean square error of 17.16 ppb. Meanwhile, our XCH4 retrievals offered nearly twice as much spatial coverage relative to the operational product. Moreover, benefiting from the rationale of band ratios, surface albedo- and aerosol-related retrieval biases in the operational product were largely mitigated in our UNMAMO retrievals. Overall, UNMAMO provides a new way to map global XCH4 with higher accuracy and computing efficiency, making it better than the operational full-physics retrieval algorithms of its kind. The accuracy-enhanced methane retrievals enable us to better resolve global methane emissions from different sectors in support of global carbon accounting and sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助面缺陷采纳,获得10
刚刚
海心发布了新的文献求助30
刚刚
科研通AI5应助花花采纳,获得30
1秒前
gigi完成签到,获得积分10
1秒前
杰卿发布了新的文献求助10
1秒前
风清扬发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
orixero应助kk采纳,获得10
2秒前
路灯下的小伙完成签到,获得积分10
2秒前
英姑应助追寻依风采纳,获得10
2秒前
3秒前
只道寻常发布了新的文献求助10
3秒前
123456发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
zwy109发布了新的文献求助10
6秒前
NexusExplorer应助凉皮亮晶晶采纳,获得10
6秒前
7秒前
加贝峥发布了新的文献求助10
7秒前
7秒前
8秒前
zwy109发布了新的文献求助10
8秒前
wanci应助杰卿采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
只道寻常完成签到,获得积分10
8秒前
ZJPPPP应助科研通管家采纳,获得10
8秒前
kluberos关注了科研通微信公众号
8秒前
hby完成签到,获得积分10
8秒前
9秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
山山而川完成签到,获得积分10
9秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646