Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data

遥感 环境科学 甲烷 估计 计算机科学 气象学 地质学 工程类 生态学 物理 系统工程 生物
作者
Ke Li,Kaixu Bai,Penglong Jiao,He Chen,Huiqun He,Liuqing Shao,Yibing Sun,Zhe Zheng,Ruijie Li,Ni‐Bin Chang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:304: 114039-114039 被引量:2
标识
DOI:10.1016/j.rse.2024.114039
摘要

Accurate monitoring of atmospheric methane concentration (XCH4) is relevant to improving carbon accounting and climate change attribution. Nevertheless, the commonly used full-physics carbon retrieval algorithm suffers from intensive computing burden and many algorithmic constraints. Aiming at providing a more efficient solution to advance global methane mapping, a novel XCH4 retrieval algorithm for monitoring atmospheric methane, that is, the UNbiased methane estimation with the aid of MAchine learning and MultiObjective programming (UNMAMO), was introduced. By taking advantage of a multiobjective programming approach, TROPOMI bands with apparent methane absorption features were first pinpointed via radiative transfer simulations, and band ratios were then calculated between methane sensitive and adjacent insensitive bands to enhance methane signal-to-noise ratio. Machine-learned prediction models were subsequently established using random forest by taking GOSAT XCH4 retrievals as the learning target with TROPOMI band ratios as the critical proxy variables. For demonstration, global XCH4 was mapped on a daily basis in 2021 with a grid resolution of 0.05°. The validation results confirmed a better agreement of our XCH4 retrievals than the operational TROPOMI XCH4 product with ground-based TCCON methane observations, with a correlation coefficient of 0.91 and root mean square error of 17.16 ppb. Meanwhile, our XCH4 retrievals offered nearly twice as much spatial coverage relative to the operational product. Moreover, benefiting from the rationale of band ratios, surface albedo- and aerosol-related retrieval biases in the operational product were largely mitigated in our UNMAMO retrievals. Overall, UNMAMO provides a new way to map global XCH4 with higher accuracy and computing efficiency, making it better than the operational full-physics retrieval algorithms of its kind. The accuracy-enhanced methane retrievals enable us to better resolve global methane emissions from different sectors in support of global carbon accounting and sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜完成签到,获得积分10
刚刚
刚刚
Owen应助跳跃的曼荷采纳,获得10
1秒前
Crystal完成签到,获得积分10
1秒前
hellozijia完成签到,获得积分10
2秒前
幽默香旋完成签到,获得积分10
2秒前
zhi芝完成签到 ,获得积分10
2秒前
煲煲煲仔饭完成签到,获得积分10
2秒前
11完成签到 ,获得积分10
3秒前
快乐修勾完成签到 ,获得积分10
4秒前
Alienwalker完成签到 ,获得积分10
4秒前
惊蛰时分听春雷完成签到,获得积分10
4秒前
鱼香rose盖饭完成签到,获得积分10
4秒前
5秒前
温柔的夜柳完成签到,获得积分10
5秒前
5秒前
eagle14835完成签到,获得积分10
5秒前
Pengcheng发布了新的文献求助10
6秒前
舒心的芝麻完成签到,获得积分10
6秒前
简一完成签到,获得积分10
6秒前
7rey完成签到,获得积分10
6秒前
机械腾完成签到,获得积分10
7秒前
zzzzz完成签到,获得积分10
7秒前
gxh00完成签到,获得积分10
8秒前
口爱DI乔巴完成签到,获得积分10
8秒前
旷野发布了新的文献求助10
9秒前
llzuo完成签到,获得积分10
9秒前
方减除发布了新的文献求助10
9秒前
Prillision完成签到,获得积分10
9秒前
冬瓜熊完成签到,获得积分10
10秒前
随风走完成签到,获得积分10
10秒前
sgs完成签到,获得积分10
11秒前
liam完成签到,获得积分10
11秒前
kdkfjaljk完成签到 ,获得积分10
11秒前
甜崽小肉丸完成签到,获得积分10
11秒前
DAI完成签到,获得积分10
12秒前
EnjieLin完成签到,获得积分10
13秒前
丫头完成签到 ,获得积分10
13秒前
诸葛烤鸭完成签到,获得积分10
14秒前
1107任务报告完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855