Developing unbiased estimation of atmospheric methane via machine learning and multiobjective programming based on TROPOMI and GOSAT data

遥感 环境科学 甲烷 估计 计算机科学 气象学 地质学 工程类 生态学 生物 物理 系统工程
作者
Ke Li,Kaixu Bai,Penglong Jiao,He Chen,Huiqun He,Liuqing Shao,Yibing Sun,Zhe Zheng,Ruijie Li,Ni‐Bin Chang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:304: 114039-114039 被引量:2
标识
DOI:10.1016/j.rse.2024.114039
摘要

Accurate monitoring of atmospheric methane concentration (XCH4) is relevant to improving carbon accounting and climate change attribution. Nevertheless, the commonly used full-physics carbon retrieval algorithm suffers from intensive computing burden and many algorithmic constraints. Aiming at providing a more efficient solution to advance global methane mapping, a novel XCH4 retrieval algorithm for monitoring atmospheric methane, that is, the UNbiased methane estimation with the aid of MAchine learning and MultiObjective programming (UNMAMO), was introduced. By taking advantage of a multiobjective programming approach, TROPOMI bands with apparent methane absorption features were first pinpointed via radiative transfer simulations, and band ratios were then calculated between methane sensitive and adjacent insensitive bands to enhance methane signal-to-noise ratio. Machine-learned prediction models were subsequently established using random forest by taking GOSAT XCH4 retrievals as the learning target with TROPOMI band ratios as the critical proxy variables. For demonstration, global XCH4 was mapped on a daily basis in 2021 with a grid resolution of 0.05°. The validation results confirmed a better agreement of our XCH4 retrievals than the operational TROPOMI XCH4 product with ground-based TCCON methane observations, with a correlation coefficient of 0.91 and root mean square error of 17.16 ppb. Meanwhile, our XCH4 retrievals offered nearly twice as much spatial coverage relative to the operational product. Moreover, benefiting from the rationale of band ratios, surface albedo- and aerosol-related retrieval biases in the operational product were largely mitigated in our UNMAMO retrievals. Overall, UNMAMO provides a new way to map global XCH4 with higher accuracy and computing efficiency, making it better than the operational full-physics retrieval algorithms of its kind. The accuracy-enhanced methane retrievals enable us to better resolve global methane emissions from different sectors in support of global carbon accounting and sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王灿灿应助zhaomr采纳,获得10
刚刚
hmhu发布了新的文献求助10
1秒前
4秒前
单薄惜文应助小确幸采纳,获得10
4秒前
今后应助town1223采纳,获得10
5秒前
何文军完成签到,获得积分10
5秒前
爱打球的小蔡鸡完成签到,获得积分10
6秒前
6秒前
wangjing应助123采纳,获得10
8秒前
小羊发布了新的文献求助10
9秒前
务实小鸽子完成签到 ,获得积分10
9秒前
子车谷波完成签到,获得积分10
9秒前
小确幸完成签到,获得积分10
10秒前
13秒前
陈晚拧完成签到 ,获得积分10
13秒前
13秒前
科研通AI2S应助zhaomr采纳,获得10
13秒前
酷波er应助ardejiang采纳,获得10
15秒前
怜梦完成签到,获得积分10
15秒前
chen完成签到,获得积分20
15秒前
我要赶快毕业完成签到,获得积分10
16秒前
慕青应助阔达荣轩采纳,获得10
16秒前
小羊完成签到,获得积分10
17秒前
眼睛大鸭子完成签到,获得积分10
19秒前
19秒前
qiu完成签到,获得积分10
20秒前
爱吃饼干的土拨鼠完成签到,获得积分10
21秒前
Sherlock完成签到,获得积分10
24秒前
24秒前
26秒前
Neil发布了新的文献求助10
26秒前
27秒前
28秒前
葭月十七发布了新的文献求助10
29秒前
香蕉觅云应助Neil采纳,获得10
33秒前
阔达荣轩发布了新的文献求助10
33秒前
琦qi完成签到 ,获得积分10
34秒前
筱筱完成签到 ,获得积分10
35秒前
36秒前
haozi王完成签到,获得积分10
36秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242492
求助须知:如何正确求助?哪些是违规求助? 2886874
关于积分的说明 8245034
捐赠科研通 2555371
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625554