作者
Sarthak Mohanty,Fthimnir M. Hassan,Lawrence G. Lenke,Erik Lewerenz,Peter G. Passias,Eric O. Klineberg,Virginie Lafage,Justin S. Smith,D. Kojo Hamilton,Jeffrey L. Gum,Renaud Lafage,Jeffrey P. Mullin,Bassel G. Diebo,Thomas J. Buell,Han Jo Kim,Khalid Kebaish,Robert K. Eastlack,Alan H. Daniels,Gregory M. Mundis,Richard A. Hostin,Themistocles S. Protopsaltis,Robert A. Hart,Munish C. Gupta,Frank J. Schwab,Christopher I. Shaffrey,Christopher P. Ames,Douglas C. Burton,Shay Bess
摘要
Among adult spinal deformity (ASD) patients, heterogeneity in patient pathology, surgical expectations, baseline impairments, and frailty complicates comparisons in clinical outcomes and research. This study aims to qualitatively segment ASD patients using machine learning-based clustering on a large, multicenter, prospectively gathered ASD cohort.