亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Frequency estimation based on progressive spectral leakage shrinking for multi-tone signals

估计员 残余物 频谱泄漏 稳健性(进化) 语调(文学) 数学 语音识别 计算机科学 统计 算法 快速傅里叶变换 生物化学 基因 文学类 艺术 化学
作者
Xiangdong Huang,Chong Lu,Qian Lin,Jun Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111200-111200 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111200
摘要

The frequency estimation of multi-tone exponential signals plays important roles in vast applications. However, mutual spectral interference among tones (especially for cases of densely distributed tones) severely deteriorates the estimation accuracy. To address this problem, we propose a progressive spectral leakage shrinking-based multi-tone estimator derived from a range-controlled single-tone estimator. Based on deducing an interpolator with controllable range flexibility, our proposed iterative single-tone estimator acquires high accuracy via frequency shift and compensation operations, highlighting the effect of shrinking spectral leakage. Furthermore, in the multi-tone estimator design, it is necessary to construct two types of residual signals iteratively (i.e., descending residual and exclusive residual), which are fed into our proposed range-controlled single-tone estimator to output the frequency estimates. Both the residual construction and the callback of the single-tone estimator facilitate the progressive spectral leakage shrinking as the iteration proceeds, which together entitles our multi-tone estimator with the characteristic of automatically suppressing mutual spectral interference without any prior information. The numerical results demonstrate that the proposed multi-tone estimator overall outperforms the existing estimators in accuracy, suppressing mutual spectral interference and robustness in dense spectrum recognition, etc., presenting the proposed multi-tone estimator with vast potential in future applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxiaohui发布了新的文献求助10
2秒前
啵子发布了新的文献求助10
10秒前
13秒前
16秒前
sugkook发布了新的文献求助10
18秒前
曾业辉发布了新的文献求助10
22秒前
30秒前
零知识发布了新的文献求助10
33秒前
粥粥大王完成签到,获得积分10
35秒前
粥粥大王发布了新的文献求助10
39秒前
652183758完成签到 ,获得积分10
44秒前
44秒前
所所应助柚子采纳,获得10
45秒前
酷波er应助啵子采纳,获得10
46秒前
丘比特应助曾业辉采纳,获得10
55秒前
TXZ06完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Lumi发布了新的文献求助10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
苯苯完成签到,获得积分10
1分钟前
CipherSage应助苯苯采纳,获得10
1分钟前
科研通AI6.1应助洪子睿采纳,获得10
1分钟前
脑洞疼应助要减肥的冰姬采纳,获得30
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
啵子发布了新的文献求助10
2分钟前
2分钟前
literature发布了新的文献求助10
2分钟前
MchemG应助零知识采纳,获得10
2分钟前
yolo完成签到 ,获得积分10
2分钟前
iorpi完成签到,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780249
求助须知:如何正确求助?哪些是违规求助? 5653879
关于积分的说明 15452923
捐赠科研通 4910998
什么是DOI,文献DOI怎么找? 2643189
邀请新用户注册赠送积分活动 1590828
关于科研通互助平台的介绍 1545336