Resting-state brain network connectivity is an independent predictor of responsiveness to language therapy in chronic post-stroke aphasia

失语症 默认模式网络 心理学 静息状态功能磁共振成像 任务正网络 显著性(神经科学) 功能连接 冲程(发动机) 聚类系数 神经科学 认知心理学 人工智能 聚类分析 计算机科学 工程类 机械工程
作者
Isaac Falconer,Maria Varkanitsa,Swathi Kiran
出处
期刊:Cortex [Elsevier]
卷期号:173: 296-312 被引量:10
标识
DOI:10.1016/j.cortex.2023.11.022
摘要

Post-stroke aphasia recovery, especially in the chronic phase, is challenging to predict. Functional integrity of the brain and brain network topology have been suggested as biomarkers of language recovery. This study sought to investigate functional connectivity in four predefined brain networks (i.e., language, default mode, dorsal attention, and salience networks), in relation to aphasia severity and response to language therapy. Thirty patients with chronic post-stroke aphasia were recruited and received a treatment targeting word finding. Structural and functional brain scans were acquired at baseline and resting state functional connectivity for each network was calculated. Additionally, graph measures quantifying network properties were calculated for each network. These included global efficiency for all networks and average strength and clustering coefficient for the language network. Linear mixed effects models showed that mean functional connectivity in the default mode, dorsal attention, and salience networks as well as graph measures of all four networks are independent predictors of response to therapy. While greater mean functional connectivity and global efficiency of the dorsal attention and salience networks predicted greater treatment response, greater mean functional connectivity and global efficiency in the default mode network predicted poorer treatment response. Results for the language network were more nuanced with more efficient network configurations (as reflected in graph measures), but not mean functional connectivity, predicting greater treatment response. These findings highlight the prognostic value of resting-state functional connectivity in chronic treatment-induced aphasia recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助wangjin采纳,获得10
1秒前
完美世界应助发如雪采纳,获得10
2秒前
英俊的铭应助qu采纳,获得10
3秒前
3秒前
4秒前
科研通AI2S应助陀飞轮采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
1111应助科研通管家采纳,获得20
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得50
5秒前
充电宝应助科研通管家采纳,获得30
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
linzhb6应助科研通管家采纳,获得20
5秒前
烟花应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
沐风发布了新的文献求助10
5秒前
Tourist应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Tourist应助科研通管家采纳,获得10
5秒前
图图应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得30
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
小新应助科研通管家采纳,获得20
6秒前
4311发布了新的文献求助30
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
领导范儿应助主将从现采纳,获得10
6秒前
7秒前
7秒前
小青椒应助重要的香采纳,获得30
8秒前
夏天发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337