Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers

离群值 数学优化 稳健优化 数学 最优化问题 计量经济学 统计
作者
Nan Jiang,Weijun Xie
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:34 (1): 419-458
标识
DOI:10.1137/22m1528094
摘要

.A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of distributionally robust optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers such that their corresponding recourse function values are very large or even infinite, the commonly used DRO framework alone tends to overemphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary, distributionally favorable optimization (DFO), concerning the best-case expected recourse function under the most favorable distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic programs without relatively complete recourse. The numerical study demonstrates that the framework is promising.Keywordsdistributionally favorable optimizationdistributionally robust optimizationrobust statisticsMSC codes90C1190C1562J07

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
stttt完成签到,获得积分20
2秒前
5秒前
可爱的函函应助lelehanhan采纳,获得30
5秒前
聪慧念桃发布了新的文献求助10
5秒前
6秒前
stttt发布了新的文献求助10
7秒前
7秒前
Ying发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
大白菜发布了新的文献求助10
11秒前
12秒前
asdfzxcv应助陈雯采纳,获得10
12秒前
靓丽翩跹完成签到,获得积分10
13秒前
Thi发布了新的文献求助10
13秒前
14秒前
ouya完成签到,获得积分10
14秒前
15秒前
old杜发布了新的文献求助10
16秒前
鲁遥完成签到,获得积分10
17秒前
yang发布了新的文献求助10
18秒前
FashionBoy应助草木青采纳,获得10
18秒前
18秒前
聪慧念桃完成签到,获得积分10
20秒前
荆玉豪完成签到,获得积分10
21秒前
23秒前
24秒前
CodeCraft应助你好采纳,获得10
25秒前
可玩性完成签到 ,获得积分10
25秒前
CipherSage应助krito采纳,获得10
25秒前
whisper完成签到,获得积分10
27秒前
28秒前
28秒前
瑶瑶车发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617