Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers

离群值 数学优化 稳健优化 数学 最优化问题 计量经济学 统计
作者
Nan Jiang,Weijun Xie
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:34 (1): 419-458
标识
DOI:10.1137/22m1528094
摘要

.A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of distributionally robust optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers such that their corresponding recourse function values are very large or even infinite, the commonly used DRO framework alone tends to overemphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary, distributionally favorable optimization (DFO), concerning the best-case expected recourse function under the most favorable distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic programs without relatively complete recourse. The numerical study demonstrates that the framework is promising.Keywordsdistributionally favorable optimizationdistributionally robust optimizationrobust statisticsMSC codes90C1190C1562J07

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到 ,获得积分20
刚刚
1秒前
星辰大海应助马铃薯采纳,获得10
1秒前
2秒前
sweet完成签到,获得积分10
2秒前
摸鱼科夫斯基完成签到,获得积分10
2秒前
3秒前
寒天抒完成签到,获得积分10
3秒前
bkagyin应助1134采纳,获得10
4秒前
刘钊扬发布了新的文献求助10
4秒前
拼搏的访天完成签到,获得积分10
4秒前
无花果应助笑笑采纳,获得30
4秒前
5秒前
王多鱼完成签到,获得积分10
5秒前
脑洞疼应助lf采纳,获得10
5秒前
tian完成签到,获得积分10
6秒前
6秒前
俭朴士晋发布了新的文献求助10
7秒前
田様应助北北贝贝采纳,获得10
8秒前
说几句完成签到,获得积分10
8秒前
背后寒烟发布了新的文献求助10
9秒前
桂花乌龙完成签到,获得积分10
9秒前
甘特发布了新的文献求助10
9秒前
王多鱼发布了新的文献求助10
11秒前
充电宝应助安平采纳,获得10
11秒前
科研通AI6应助月月采纳,获得10
12秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
浮游应助董宇峰采纳,获得10
16秒前
HMM完成签到,获得积分10
17秒前
18秒前
科研通AI6应助俭朴士晋采纳,获得10
18秒前
18秒前
18秒前
baibai完成签到,获得积分10
18秒前
xilu完成签到,获得积分10
19秒前
19秒前
尼古拉斯.科研.红完成签到 ,获得积分10
20秒前
小心发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646711
求助须知:如何正确求助?哪些是违规求助? 4772234
关于积分的说明 15036353
捐赠科研通 4805530
什么是DOI,文献DOI怎么找? 2569751
邀请新用户注册赠送积分活动 1526689
关于科研通互助平台的介绍 1485889