已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers

离群值 数学优化 稳健优化 数学 最优化问题 计量经济学 统计
作者
Nan Jiang,Weijun Xie
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:34 (1): 419-458
标识
DOI:10.1137/22m1528094
摘要

.A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of distributionally robust optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers such that their corresponding recourse function values are very large or even infinite, the commonly used DRO framework alone tends to overemphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary, distributionally favorable optimization (DFO), concerning the best-case expected recourse function under the most favorable distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic programs without relatively complete recourse. The numerical study demonstrates that the framework is promising.Keywordsdistributionally favorable optimizationdistributionally robust optimizationrobust statisticsMSC codes90C1190C1562J07
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕咕咕完成签到 ,获得积分10
1秒前
1秒前
成就莞完成签到,获得积分20
3秒前
4秒前
柠橙发布了新的文献求助10
4秒前
4秒前
在水一方发布了新的文献求助10
5秒前
乐乐应助挽眠采纳,获得10
5秒前
Hello应助小张只爱姜云升采纳,获得10
5秒前
5秒前
vic303完成签到,获得积分20
5秒前
山中蠢驴完成签到,获得积分10
6秒前
wangxiaobin发布了新的文献求助10
8秒前
vic303发布了新的文献求助10
10秒前
不良帅完成签到,获得积分10
11秒前
英姑应助Maple采纳,获得10
12秒前
大模型应助青枫也燃烧采纳,获得50
13秒前
科目三应助火星上牛青采纳,获得10
13秒前
Harper发布了新的文献求助30
13秒前
研友_VZG7GZ应助一部船采纳,获得10
14秒前
柠橙完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
搜集达人应助123采纳,获得10
18秒前
挽眠发布了新的文献求助10
19秒前
Cashwa完成签到,获得积分10
19秒前
21秒前
拓跋涵易发布了新的文献求助10
21秒前
21秒前
22秒前
完美世界应助江汛采纳,获得10
23秒前
25秒前
26秒前
26秒前
27秒前
28秒前
李哈发布了新的文献求助10
29秒前
30秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150370
求助须知:如何正确求助?哪些是违规求助? 2801504
关于积分的说明 7845091
捐赠科研通 2459062
什么是DOI,文献DOI怎么找? 1308898
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727