亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers

离群值 数学优化 稳健优化 数学 最优化问题 计量经济学 统计
作者
Nan Jiang,Weijun Xie
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:34 (1): 419-458
标识
DOI:10.1137/22m1528094
摘要

.A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of distributionally robust optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers such that their corresponding recourse function values are very large or even infinite, the commonly used DRO framework alone tends to overemphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary, distributionally favorable optimization (DFO), concerning the best-case expected recourse function under the most favorable distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic programs without relatively complete recourse. The numerical study demonstrates that the framework is promising.Keywordsdistributionally favorable optimizationdistributionally robust optimizationrobust statisticsMSC codes90C1190C1562J07

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助李佳怡采纳,获得10
10秒前
12秒前
26秒前
46秒前
wodetaiyangLLL完成签到 ,获得积分10
50秒前
57秒前
MchemG应助TXZ06采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
MchemG应助TXZ06采纳,获得30
1分钟前
1分钟前
1分钟前
简宁完成签到,获得积分10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
李佳怡发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
Amoro发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
李佳怡完成签到,获得积分10
2分钟前
2分钟前
Amoro完成签到,获得积分10
2分钟前
东溟渔夫发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
香蕉觅云应助xzy998采纳,获得50
3分钟前
3分钟前
3分钟前
清风明月完成签到 ,获得积分10
3分钟前
haprier完成签到 ,获得积分10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
taku完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助daizao采纳,获得30
5分钟前
G.D完成签到 ,获得积分10
5分钟前
Juse332发布了新的文献求助10
5分钟前
东溟渔夫发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664480
求助须知:如何正确求助?哪些是违规求助? 4862708
关于积分的说明 15107835
捐赠科研通 4823085
什么是DOI,文献DOI怎么找? 2581925
邀请新用户注册赠送积分活动 1536045
关于科研通互助平台的介绍 1494449