Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers

离群值 数学优化 稳健优化 数学 最优化问题 计量经济学 统计
作者
Nan Jiang,Weijun Xie
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:34 (1): 419-458
标识
DOI:10.1137/22m1528094
摘要

.A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of distributionally robust optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers such that their corresponding recourse function values are very large or even infinite, the commonly used DRO framework alone tends to overemphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary, distributionally favorable optimization (DFO), concerning the best-case expected recourse function under the most favorable distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic programs without relatively complete recourse. The numerical study demonstrates that the framework is promising.Keywordsdistributionally favorable optimizationdistributionally robust optimizationrobust statisticsMSC codes90C1190C1562J07

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷李可爱婕完成签到 ,获得积分10
刚刚
刚刚
香蕉觅云应助Daria采纳,获得10
刚刚
1秒前
研友_wZr5Rn发布了新的文献求助10
1秒前
YangLi完成签到,获得积分10
2秒前
领导范儿应助文艺水风采纳,获得10
3秒前
在水一方应助文艺水风采纳,获得50
3秒前
共享精神应助文艺水风采纳,获得30
3秒前
秀儿发布了新的文献求助10
3秒前
汉堡包应助霸气的面包采纳,获得10
4秒前
5秒前
善学以致用应助YangLi采纳,获得10
5秒前
ABC发布了新的文献求助10
6秒前
hahahaha完成签到,获得积分10
7秒前
萧布完成签到,获得积分10
8秒前
gstaihn完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
852应助科研通管家采纳,获得10
9秒前
jyy应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得30
9秒前
七月流火应助科研通管家采纳,获得100
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
Heaven发布了新的文献求助10
11秒前
ABC完成签到,获得积分10
12秒前
NexusExplorer应助Niki采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
华仔应助雷锋采纳,获得10
12秒前
13秒前
乐乐应助王菲采纳,获得10
13秒前
善良静竹完成签到 ,获得积分10
14秒前
14秒前
乱武完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660316
求助须知:如何正确求助?哪些是违规求助? 4832930
关于积分的说明 15090040
捐赠科研通 4818943
什么是DOI,文献DOI怎么找? 2578875
邀请新用户注册赠送积分活动 1533460
关于科研通互助平台的介绍 1492226