Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers

离群值 数学优化 稳健优化 数学 最优化问题 计量经济学 统计
作者
Nan Jiang,Weijun Xie
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:34 (1): 419-458
标识
DOI:10.1137/22m1528094
摘要

.A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of distributionally robust optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers such that their corresponding recourse function values are very large or even infinite, the commonly used DRO framework alone tends to overemphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary, distributionally favorable optimization (DFO), concerning the best-case expected recourse function under the most favorable distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic programs without relatively complete recourse. The numerical study demonstrates that the framework is promising.Keywordsdistributionally favorable optimizationdistributionally robust optimizationrobust statisticsMSC codes90C1190C1562J07

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Charles完成签到 ,获得积分10
2秒前
顾矜应助高贵的悟空采纳,获得10
2秒前
xianyi完成签到,获得积分10
2秒前
2秒前
3秒前
123发布了新的文献求助10
3秒前
大个应助无情的宛丝采纳,获得10
5秒前
5秒前
nini发布了新的文献求助10
5秒前
传奇3应助白桃乌龙采纳,获得30
5秒前
研友_VZG7GZ应助小魏采纳,获得10
6秒前
xbj笑哈哈发布了新的文献求助10
6秒前
yyyee发布了新的文献求助10
6秒前
顾矜应助睦月采纳,获得10
7秒前
8秒前
小马甲应助俏皮的凡白采纳,获得10
8秒前
ding应助小心薛了你采纳,获得10
8秒前
9秒前
慕青应助水123采纳,获得10
9秒前
代军发布了新的文献求助10
10秒前
小立发布了新的文献求助10
10秒前
11秒前
脑洞疼应助123采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
超级幼旋应助科研通管家采纳,获得10
11秒前
leslie应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得200
11秒前
乐乐应助科研通管家采纳,获得10
12秒前
AneyWinter66应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297