Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers

离群值 数学优化 稳健优化 数学 最优化问题 计量经济学 统计
作者
Nan Jiang,Weijun Xie
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:34 (1): 419-458
标识
DOI:10.1137/22m1528094
摘要

.A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of distributionally robust optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers such that their corresponding recourse function values are very large or even infinite, the commonly used DRO framework alone tends to overemphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary, distributionally favorable optimization (DFO), concerning the best-case expected recourse function under the most favorable distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic programs without relatively complete recourse. The numerical study demonstrates that the framework is promising.Keywordsdistributionally favorable optimizationdistributionally robust optimizationrobust statisticsMSC codes90C1190C1562J07

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuzengzhang666完成签到,获得积分10
刚刚
22发布了新的文献求助10
1秒前
冷静烨霖发布了新的文献求助10
1秒前
Waley驳回了大个应助
2秒前
Akim应助ronll采纳,获得10
2秒前
2秒前
风清扬发布了新的文献求助10
2秒前
领导范儿应助无糖零脂采纳,获得10
3秒前
英俊的铭应助哒哒哒采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
wf发布了新的文献求助10
5秒前
麦田的守望者完成签到,获得积分10
6秒前
6秒前
6秒前
Doss发布了新的文献求助10
6秒前
YANG完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
我是老大应助欢呼的开山采纳,获得10
8秒前
瘦瘦达完成签到,获得积分10
8秒前
上官若男应助caicai采纳,获得10
8秒前
小青椒应助罗婉婷采纳,获得100
9秒前
zy发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
小陈医师完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
12秒前
12秒前
12秒前
xiuxiuzhang发布了新的文献求助10
13秒前
芝士椰果发布了新的文献求助10
13秒前
慕青应助北克采纳,获得10
14秒前
xh完成签到,获得积分10
14秒前
考博圣体发布了新的文献求助10
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277