Near-Infrared Spectroscopy for Distinguishing Malignancy in Thyroid Nodules

甲状腺结节 甲状腺癌 线性判别分析 主成分分析 结核(地质) 二次分类器 甲状腺 甲状腺肿 恶性肿瘤 放射科 医学 人工智能 病理 内科学 计算机科学 支持向量机 古生物学 生物
作者
Hendra Zufry,Agus Arip Munawar
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:78 (6): 627-632
标识
DOI:10.1177/00037028241232440
摘要

Thyroid nodules are common clinical entities, with a significant proportion being malignant. Early, accurate, and non-invasive tools to differentiate benign and malignant nodules can optimize patient management and reduce unnecessary surgery. This study aimed to evaluate the efficacy and accuracy of near-infrared spectroscopy (NIRS) in distinguishing benign from malignant thyroid nodules. A diffuse reflectance spectrum for a total of 20 thyroid nodule samples (10 samples as colloid goiter and 10 samples as thyroid cancer), were acquired in the wavelength range from 1000 to 2500 nm. Spectral data from NIRS were analyzed by means of principal component analysis (PCA), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) to classify and differentiate thyroid nodule samples. The present study found that NIRS effectively distinguished colloid goiter and thyroid cancer using the first two principal components (PCs), explaining 90% and 10% of the variance, respectively. QDA discrimination plot displayed a clear separation between colloid goiter and thyroid cancer with minimal overlap, aligning with reported 95% accuracy. Additionally, applying LDA to seven PCs from PCA achieved a 100% accuracy rate in classifying colloid goiter and thyroid cancer from near-infrared spectral data. In conclusion, NIRS offers a promising, non-invasive complementing diagnostic tool for differentiating benign from malignant thyroid nodules with high accuracy. Future work should integrate these results into predictive model development, emphasizing external validation, alternative performance metrics, and protecting against potential overfitting translation of a machine learning model to a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助zccc采纳,获得10
刚刚
隐形的雁完成签到,获得积分10
刚刚
追寻的秋玲完成签到,获得积分10
1秒前
李繁蕊发布了新的文献求助10
1秒前
2秒前
舒心的紫雪完成签到 ,获得积分10
3秒前
3秒前
5秒前
5秒前
6秒前
不上课不行完成签到,获得积分10
7秒前
再干一杯完成签到,获得积分10
7秒前
8秒前
汉堡包应助rudjs采纳,获得10
9秒前
9秒前
zsyzxb发布了新的文献求助10
10秒前
东东发布了新的文献求助10
10秒前
zena92发布了新的文献求助10
11秒前
锤子米完成签到,获得积分10
11秒前
11秒前
赤练仙子完成签到,获得积分10
13秒前
MnO2fff应助zsyzxb采纳,获得20
16秒前
kingwill应助zsyzxb采纳,获得20
16秒前
顺利鱼完成签到,获得积分10
17秒前
19秒前
20秒前
Xx.完成签到,获得积分10
21秒前
星辰大海应助内向凌兰采纳,获得10
21秒前
21秒前
wuzhizhiya完成签到,获得积分10
22秒前
23秒前
rudjs发布了新的文献求助10
23秒前
26秒前
Ava应助何糖采纳,获得10
26秒前
桐桐应助美丽的芷烟采纳,获得10
26秒前
野子完成签到,获得积分10
27秒前
情怀应助小D采纳,获得30
28秒前
yuan发布了新的文献求助10
28秒前
berry发布了新的文献求助10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808