Deep Learning-Driven One-Shot Dual-View 3-D Reconstruction for Dual-Projector System

投影机 计算机科学 人工智能 投影(关系代数) 结构光 计算机视觉 栅栏 结构光三维扫描仪 数字光处理 计算机图形学(图像) 绘图 一次性 对偶(语法数字) 过程(计算) 理论(学习稳定性) 深度学习 算法 光学 工程类 机器学习 物理 文学类 艺术 操作系统 机械工程 扫描仪
作者
Yiming Li,Zhuang Li,Chaobo Zhang,Min Han,Fengxiao Lei,Xiaojun Liang,Xiaohao Wang,Weihua Gui,Xinghui Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:5
标识
DOI:10.1109/tim.2023.3343782
摘要

Fringe projection profilometry (FPP) is an extensively used active three-dimensional (3D) measurement technique. However, it faces challenges in achieving synchronous improvement of measurement range, speed, accuracy and shadow issues. To meet the demand for rapid 3D reconstruction of two projection views only using a single-shot phase-shifting grating, we initially propose a fast and large-scale 3D reconstruction system based on deep learning with a dual-projector and single-camera configuration, named DL_DPSL. The key feature is that the entire measurement process only requires two projectors to project one image simultaneously. To validate the effect, we constructed a simulated and a real system and corresponding simulation ( ˜3300 sets) and real dataset ( ˜1000 sets) respectively. The experimental results show that based ResUNet the DL_DPSL system can recover the phases of two projection views from one-shot superimposed phase-shifting grating within 0.018 s inclusive projection time when using two NVIDIA GeForce RTX 3090 graphics cards. Additionally, despite reducing the projection time by half, in the simulation dataset, exists the mean average error was reduced by a maximum of 20%. And similar performance improvements in the continuous area of the measured objects in the real dataset. The DL_DPSL system has better accuracy and stability compared to the current fastest deep learning system. DL_DPSL breaks the existing dual-projector structured light 3D measurement system paradigm, providing a new solution to promote the development and industrial application of FPP technology, with broad application prospects. (Simulation and real datasets are publicly available on the following GitHub repository: https://github.com/LiYiMingM/DPSL3D-measurement).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
5秒前
5秒前
6秒前
6秒前
Atopos完成签到,获得积分10
6秒前
7秒前
健壮雨发布了新的文献求助10
8秒前
郑晓龙发布了新的文献求助10
9秒前
晓宇发布了新的文献求助10
10秒前
17完成签到 ,获得积分10
10秒前
罗伊黄完成签到 ,获得积分10
11秒前
qi发布了新的文献求助30
11秒前
成就老头完成签到,获得积分10
12秒前
支雨泽发布了新的文献求助10
12秒前
积极鱼完成签到 ,获得积分10
13秒前
月yue完成签到,获得积分10
13秒前
HMONEY应助专玩对抗路采纳,获得50
17秒前
Junooo完成签到,获得积分10
17秒前
郑晓龙完成签到,获得积分20
18秒前
可爱的函函应助neilhou采纳,获得30
18秒前
19秒前
19秒前
19秒前
科研通AI5应助lewu采纳,获得10
20秒前
20秒前
醉爱天下发布了新的文献求助10
20秒前
CodeCraft应助哔哔鱼采纳,获得10
22秒前
科研通AI5应助qi采纳,获得10
22秒前
疯狂的师发布了新的文献求助30
23秒前
wjar发布了新的文献求助10
24秒前
枫叶发布了新的文献求助10
24秒前
小鹿斑比完成签到,获得积分10
24秒前
b15966013195发布了新的文献求助10
24秒前
tivyg'lk发布了新的文献求助10
25秒前
26秒前
欣欣子完成签到 ,获得积分10
27秒前
28秒前
科研通AI5应助支雨泽采纳,获得10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741422
求助须知:如何正确求助?哪些是违规求助? 3284072
关于积分的说明 10038118
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646811
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478