Accuracy of GPT-4 in histopathological image detection and classification of colorectal adenomas

医学 医学诊断 诊断准确性 腺瘤 背景(考古学) 放射科 科恩卡帕 病理 计算机科学 机器学习 生物 古生物学
作者
Thiyaphat Laohawetwanit,Chutimon Namboonlue,Sompon Apornvirat
出处
期刊:Journal of Clinical Pathology [BMJ]
卷期号:: jcp-209304 被引量:14
标识
DOI:10.1136/jcp-2023-209304
摘要

Aims To evaluate the accuracy of Chat Generative Pre-trained Transformer (ChatGPT) powered by GPT-4 in histopathological image detection and classification of colorectal adenomas using the diagnostic consensus provided by pathologists as a reference standard. Methods A study was conducted with 100 colorectal polyp photomicrographs, comprising an equal number of adenomas and non-adenomas, classified by two pathologists. These images were analysed by classic GPT-4 for 1 time in October 2023 and custom GPT-4 for 20 times in December 2023. GPT-4’s responses were compared against the reference standard through statistical measures to evaluate its proficiency in histopathological diagnosis, with the pathologists further assessing the model’s descriptive accuracy. Results GPT-4 demonstrated a median sensitivity of 74% and specificity of 36% for adenoma detection. The median accuracy of polyp classification varied, ranging from 16% for non-specific changes to 36% for tubular adenomas. Its diagnostic consistency, indicated by low kappa values ranging from 0.06 to 0.11, suggested only poor to slight agreement. All of the microscopic descriptions corresponded with their diagnoses. GPT-4 also commented about the limitations in its diagnoses (eg, slide diagnosis best done by pathologists, the inadequacy of single-image diagnostic conclusions, the need for clinical data and a higher magnification view). Conclusions GPT-4 showed high sensitivity but low specificity in detecting adenomas and varied accuracy for polyp classification. However, its diagnostic consistency was low. This artificial intelligence tool acknowledged its diagnostic limitations, emphasising the need for a pathologist’s expertise and additional clinical context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bilibala完成签到,获得积分10
刚刚
稳重向南完成签到,获得积分10
刚刚
刚刚
1秒前
王泉林完成签到,获得积分20
1秒前
酷波er应助SMPs采纳,获得10
1秒前
杨锋完成签到,获得积分10
3秒前
3秒前
Tracy发布了新的文献求助10
3秒前
乐乐应助稳重向南采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
ZY完成签到,获得积分10
7秒前
9秒前
嘉玲发布了新的文献求助10
9秒前
9秒前
风评发布了新的文献求助10
10秒前
10秒前
内啡肽完成签到,获得积分10
11秒前
搬运工发布了新的文献求助10
11秒前
11秒前
如梦如幻91完成签到,获得积分10
11秒前
12秒前
1點點cui发布了新的文献求助30
12秒前
隐形曼青应助北雁采纳,获得10
13秒前
噜噜晓完成签到,获得积分10
14秒前
珍惜发布了新的文献求助30
15秒前
wyp完成签到,获得积分10
15秒前
16秒前
今后应助木光采纳,获得10
16秒前
传奇3应助橙花采纳,获得10
17秒前
璃月稻妻完成签到,获得积分10
17秒前
小年兽发布了新的文献求助10
17秒前
飞飞发布了新的文献求助10
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129632
求助须知:如何正确求助?哪些是违规求助? 2780426
关于积分的说明 7748028
捐赠科研通 2435738
什么是DOI,文献DOI怎么找? 1294243
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570