亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Speed Nonlinear Circuit Macromodeling Using Hybrid-Module Clockwork Recurrent Neural Network

计算机科学 循环神经网络 灵活性(工程) 非线性系统 发条 算法 人工神经网络 人工智能 计算机工程 数学 统计 物理 量子力学 天文
作者
Fatemeh Charoosaei,Amin Faraji,Sayed Alireza Sadrossadat,Ali Mirvakili,Weicong Na,Feng Feng,Qi‐Jun Zhang
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 767-780 被引量:4
标识
DOI:10.1109/tcsi.2023.3337115
摘要

In the computer-aided design (CAD) area, the recurrent neural network (RNN) has shown notable functionality in generating fast and high-performance models rather than the models in simulation tools. Predicting time sequences is a pervasive and challenging problem that may require identifying the dependencies between sequences that RNN is capable of performing. Despite all its features, conventional RNN still faces challenges such as limited accuracy and a large number of parameters. Therefore, we propose new macromodeling methods for nonlinear circuits called the Clockwork-RNN (CWRNN) and its hybrid version which is a more powerful but simpler implementation of a conventional RNN architecture with relatively little model complexity. In addition, CWRNN inherently models complex dependencies without the need for a large number of parameters. As a result, the computational cost is less than conventional RNN. Moreover, understanding and implementing the CWRNN is relatively simple and provides great flexibility in architectural configuration by introducing modules with several clock rates of exponents of 2. In addition to the above new modeling technique, we proposed the Hybrid-Module CWRNN as another new modeling method that utilizes modules of various exponents of different numbers resulting in further accuracy improvement of the CWRNN. Furthermore, the models obtained from the proposed techniques required much smaller simulation times compared to the current models used in simulation tools. Three nonlinear high-frequency examples have been utilized to verify the benefits of the proposed modeling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wish发布了新的文献求助20
3秒前
4秒前
知性的冰棍完成签到 ,获得积分10
5秒前
思源应助一木张采纳,获得10
6秒前
团团团完成签到 ,获得积分10
7秒前
9秒前
10秒前
愉快千万完成签到,获得积分20
12秒前
shuang完成签到 ,获得积分10
12秒前
13秒前
酷波er应助DXXX采纳,获得10
14秒前
愉快千万发布了新的文献求助30
15秒前
17秒前
huamo发布了新的文献求助10
19秒前
22秒前
传奇完成签到 ,获得积分10
23秒前
李健应助huamo采纳,获得10
23秒前
DXXX发布了新的文献求助10
27秒前
34秒前
36秒前
快乐飞丹关注了科研通微信公众号
38秒前
39秒前
小合发布了新的文献求助10
41秒前
连长完成签到,获得积分10
43秒前
jimmy_bytheway完成签到,获得积分0
43秒前
大学生完成签到 ,获得积分10
44秒前
哈哈哈发布了新的文献求助10
45秒前
小合完成签到,获得积分20
47秒前
清脆的青寒完成签到,获得积分10
47秒前
47秒前
bean完成签到 ,获得积分10
48秒前
迷路的问儿应助123采纳,获得10
48秒前
嘉博学长发布了新的文献求助10
51秒前
快乐飞丹发布了新的文献求助50
52秒前
托丽莲睡拿完成签到,获得积分10
54秒前
54秒前
梦田完成签到 ,获得积分10
55秒前
无花果应助Sunny采纳,获得10
56秒前
1分钟前
无畏完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466753
求助须知:如何正确求助?哪些是违规求助? 3059555
关于积分的说明 9066885
捐赠科研通 2750012
什么是DOI,文献DOI怎么找? 1508902
科研通“疑难数据库(出版商)”最低求助积分说明 697115
邀请新用户注册赠送积分活动 696896