Calibration of constitutive models using genetic algorithms

本构方程 算法 校准 遗传算法 计算机科学 实验数据 有限元法 集合(抽象数据类型) 可靠性(半导体) 数学 机器学习 统计 结构工程 工程类 功率(物理) 物理 量子力学 程序设计语言
作者
J.D. Robson,Daniel W. Armstrong,Joseph Cordell,D.J. Pope,Thomas Flint
出处
期刊:Mechanics of Materials [Elsevier BV]
卷期号:189: 104881-104881 被引量:3
标识
DOI:10.1016/j.mechmat.2023.104881
摘要

Constitutive models, describing material response to load, are an essential part of computational materials engineering. Semi-empirical constitutive laws including the Johnson–Cook and Zerilli–Armstrong models are widely used in finite element simulation for easy computability and rapid run time. The reliability of these models depends on accurate and reproducible fitting of parameters. This work presents a genetic algorithm (GA) based tool to fit parameters in constitutive models. The GA approach is capable of finding the global optimum parameter set in a robust, repeatable, and computationally efficient manner. It has been demonstrated that the obtained fits are better than those using traditional term-wise optimisation. Allowed to fit freely, the GA method will be likely to produce non-physical parameter values. However, by constraining the fit, the GA method can produce parameters that are physically reasonable and minimise the error when extrapolating to unseen data. Finally, the GA method may be used to choose between a variety of possible constitutive models based on a transparent best fit approach. The model has been demonstrated by using datasets from the literature for DH–36 steel and Ti–6Al–4V. This includes data from different studies, in which there are both random and systematic variations. The framework developed here is made freely available and modifiable, and may be extended to include other constitutive models as required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gying发布了新的文献求助10
3秒前
塔莉娅完成签到,获得积分10
7秒前
jingzhang发布了新的文献求助10
8秒前
lll应助科研通管家采纳,获得10
8秒前
lll应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
lll应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
wysy应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
happyAlice应助科研通管家采纳,获得30
9秒前
lll应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
制冷剂完成签到 ,获得积分10
10秒前
12秒前
进击的书包关注了科研通微信公众号
14秒前
Gying完成签到,获得积分10
14秒前
nn关闭了nn文献求助
14秒前
小二郎应助典雅的俊驰采纳,获得10
15秒前
英俊的咖啡豆完成签到 ,获得积分10
16秒前
niupotr完成签到,获得积分10
16秒前
酷炫翠桃应助开心友儿采纳,获得10
17秒前
Grace159完成签到 ,获得积分10
17秒前
梦华完成签到 ,获得积分10
17秒前
思源应助666采纳,获得10
18秒前
鲤鱼寻菡完成签到,获得积分10
18秒前
TheBugsss完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357