A Deformable Constraint Transport Network for Optimal Aortic Segmentation From CT Images

分割 几何变换 计算机科学 人工智能 计算机视觉 转化(遗传学) 拓扑(电路) 约束(计算机辅助设计) 图像分割 模式识别(心理学) 数学 图像(数学) 几何学 生物化学 化学 组合数学 基因
作者
Weiyuan Lin,Zhifan Gao,Hui Liu,Heye Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1462-1475 被引量:6
标识
DOI:10.1109/tmi.2023.3339142
摘要

Aortic segmentation from computed tomography (CT) is crucial for facilitating aortic intervention, as it enables clinicians to visualize aortic anatomy for diagnosis and measurement. However, aortic segmentation faces the challenge of variable geometry in space, as the geometric diversity of different diseases and the geometric transformations that occur between raw and measured images. Existing constraint-based methods can potentially solve the challenge, but they are hindered by two key issues: inaccurate definition of properties and inappropriate topology of transformation in space. In this paper, we propose a deformable constraint transport network (DCTN). The DCTN adaptively extracts aortic features to define intra-image constrained properties and guides topological implementation in space to constrain inter-image geometric transformation between raw and curved planar reformation (CPR) images. The DCTN contains a deformable attention extractor, a geometry-aware decoder and an optimal transport guider. The extractor generates variable patches that preserve semantic integrity and long-range dependency in long-sequence images. The decoder enhances the perception of geometric texture and semantic features, particularly for low-intensity aortic coarctation and false lumen, which removes background interference. The guider explores the geometric discrepancies between raw and CPR images, constructs probability distributions of discrepancies, and matches them with inter-image transformation to guide geometric topology in space. Experimental studies on 267 aortic subjects and four public datasets show the superiority of our DCTN over 23 methods. The results demonstrate DCTN's advantages in aortic segmentation for different types of aortic disease, for different aortic segments, and in the measurement of clinical indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
小宇完成签到,获得积分10
2秒前
3秒前
3秒前
lyf完成签到 ,获得积分10
4秒前
5秒前
張医铄发布了新的文献求助10
5秒前
小马甲应助ylyla采纳,获得10
7秒前
微光熠发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
小小猪发布了新的文献求助10
9秒前
sevenhill应助Tong采纳,获得10
10秒前
xxbxx完成签到,获得积分10
10秒前
11秒前
张立敏完成签到,获得积分10
12秒前
13秒前
14秒前
16秒前
16秒前
芍药发布了新的文献求助10
16秒前
21_xxrr完成签到,获得积分10
16秒前
英姑应助微光熠采纳,获得10
17秒前
17秒前
19秒前
鱼块发布了新的文献求助10
20秒前
passion发布了新的文献求助30
21秒前
SCI66发布了新的文献求助10
22秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
无花果应助高高的采蓝采纳,获得10
24秒前
隐形曼青应助刘小雨采纳,获得30
25秒前
orixero应助zwenng采纳,获得10
26秒前
26秒前
xzl完成签到 ,获得积分10
27秒前
Dada完成签到,获得积分10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453924
求助须知:如何正确求助?哪些是违规求助? 4561398
关于积分的说明 14282445
捐赠科研通 4485367
什么是DOI,文献DOI怎么找? 2456697
邀请新用户注册赠送积分活动 1447383
关于科研通互助平台的介绍 1422701