A Deformable Constraint Transport Network for Optimal Aortic Segmentation From CT Images

分割 几何变换 计算机科学 人工智能 计算机视觉 转化(遗传学) 拓扑(电路) 约束(计算机辅助设计) 图像分割 模式识别(心理学) 数学 图像(数学) 几何学 生物化学 化学 组合数学 基因
作者
Weiyuan Lin,Zhifan Gao,Hui Liu,Heye Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1462-1475 被引量:6
标识
DOI:10.1109/tmi.2023.3339142
摘要

Aortic segmentation from computed tomography (CT) is crucial for facilitating aortic intervention, as it enables clinicians to visualize aortic anatomy for diagnosis and measurement. However, aortic segmentation faces the challenge of variable geometry in space, as the geometric diversity of different diseases and the geometric transformations that occur between raw and measured images. Existing constraint-based methods can potentially solve the challenge, but they are hindered by two key issues: inaccurate definition of properties and inappropriate topology of transformation in space. In this paper, we propose a deformable constraint transport network (DCTN). The DCTN adaptively extracts aortic features to define intra-image constrained properties and guides topological implementation in space to constrain inter-image geometric transformation between raw and curved planar reformation (CPR) images. The DCTN contains a deformable attention extractor, a geometry-aware decoder and an optimal transport guider. The extractor generates variable patches that preserve semantic integrity and long-range dependency in long-sequence images. The decoder enhances the perception of geometric texture and semantic features, particularly for low-intensity aortic coarctation and false lumen, which removes background interference. The guider explores the geometric discrepancies between raw and CPR images, constructs probability distributions of discrepancies, and matches them with inter-image transformation to guide geometric topology in space. Experimental studies on 267 aortic subjects and four public datasets show the superiority of our DCTN over 23 methods. The results demonstrate DCTN's advantages in aortic segmentation for different types of aortic disease, for different aortic segments, and in the measurement of clinical indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱笑的安梦完成签到,获得积分10
1秒前
百甲完成签到,获得积分10
2秒前
Ari_Kun完成签到 ,获得积分10
2秒前
2秒前
yrw关注了科研通微信公众号
2秒前
科研通AI6应助刘唐荣采纳,获得10
3秒前
Owen应助莽哥采纳,获得10
3秒前
单纯的黄蜂完成签到,获得积分10
3秒前
迷路荷花发布了新的文献求助20
4秒前
行毅文发布了新的文献求助10
4秒前
负责冰凡发布了新的文献求助10
4秒前
香蕉觅云应助烟酒僧采纳,获得10
5秒前
自信鞅发布了新的文献求助10
6秒前
幸福的玫瑰应助inno采纳,获得10
6秒前
7秒前
7秒前
中级奥术师完成签到,获得积分10
8秒前
早春完成签到,获得积分10
8秒前
xxxx.发布了新的文献求助30
8秒前
茗牌棉花完成签到,获得积分20
8秒前
8秒前
jiakang完成签到,获得积分10
8秒前
8秒前
科研通AI6应助虚心念桃采纳,获得10
8秒前
沐雨橙风完成签到,获得积分10
9秒前
灰白完成签到,获得积分10
10秒前
10秒前
10秒前
小二郎应助大迷糊采纳,获得10
11秒前
11秒前
大模型应助中森菜龙采纳,获得10
11秒前
ChatGPT发布了新的文献求助10
12秒前
烟酒僧完成签到,获得积分10
12秒前
12秒前
mio发布了新的文献求助10
13秒前
13秒前
13秒前
CipherSage应助风中擎采纳,获得10
13秒前
zzz发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406