A Deformable Constraint Transport Network for Optimal Aortic Segmentation From CT Images

分割 几何变换 计算机科学 人工智能 计算机视觉 转化(遗传学) 拓扑(电路) 约束(计算机辅助设计) 图像分割 模式识别(心理学) 数学 图像(数学) 几何学 生物化学 化学 组合数学 基因
作者
Weiyuan Lin,Zhifan Gao,Hui Liu,Heye Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1462-1475 被引量:6
标识
DOI:10.1109/tmi.2023.3339142
摘要

Aortic segmentation from computed tomography (CT) is crucial for facilitating aortic intervention, as it enables clinicians to visualize aortic anatomy for diagnosis and measurement. However, aortic segmentation faces the challenge of variable geometry in space, as the geometric diversity of different diseases and the geometric transformations that occur between raw and measured images. Existing constraint-based methods can potentially solve the challenge, but they are hindered by two key issues: inaccurate definition of properties and inappropriate topology of transformation in space. In this paper, we propose a deformable constraint transport network (DCTN). The DCTN adaptively extracts aortic features to define intra-image constrained properties and guides topological implementation in space to constrain inter-image geometric transformation between raw and curved planar reformation (CPR) images. The DCTN contains a deformable attention extractor, a geometry-aware decoder and an optimal transport guider. The extractor generates variable patches that preserve semantic integrity and long-range dependency in long-sequence images. The decoder enhances the perception of geometric texture and semantic features, particularly for low-intensity aortic coarctation and false lumen, which removes background interference. The guider explores the geometric discrepancies between raw and CPR images, constructs probability distributions of discrepancies, and matches them with inter-image transformation to guide geometric topology in space. Experimental studies on 267 aortic subjects and four public datasets show the superiority of our DCTN over 23 methods. The results demonstrate DCTN's advantages in aortic segmentation for different types of aortic disease, for different aortic segments, and in the measurement of clinical indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助如是之人采纳,获得10
刚刚
搜集达人应助如是之人采纳,获得10
刚刚
刚刚
彭于晏应助如是之人采纳,获得10
刚刚
丘比特应助如是之人采纳,获得10
刚刚
Jared应助如是之人采纳,获得10
刚刚
科研通AI6应助如是之人采纳,获得10
刚刚
可爱的函函应助如是之人采纳,获得10
刚刚
脑洞疼应助如是之人采纳,获得10
刚刚
exile516发布了新的文献求助10
刚刚
liuhe发布了新的文献求助10
刚刚
刚刚
zg发布了新的文献求助10
1秒前
1秒前
甜味白开水完成签到,获得积分10
1秒前
任大师兄完成签到,获得积分10
2秒前
123完成签到,获得积分10
3秒前
3秒前
3秒前
六六六完成签到,获得积分20
3秒前
张zhang发布了新的文献求助10
4秒前
lishanshan发布了新的文献求助10
4秒前
4秒前
4秒前
shumin发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
天天快乐应助WANG采纳,获得10
5秒前
天天快乐应助梦将军采纳,获得30
5秒前
zzb完成签到,获得积分10
6秒前
6秒前
闪闪航空发布了新的文献求助10
6秒前
科研通AI6应助邢哥哥采纳,获得10
6秒前
威武道罡发布了新的文献求助10
7秒前
聂紫寒完成签到,获得积分10
7秒前
大模型应助425711204采纳,获得10
7秒前
小六九发布了新的文献求助10
7秒前
大轩完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552039
求助须知:如何正确求助?哪些是违规求助? 4636877
关于积分的说明 14646248
捐赠科研通 4578705
什么是DOI,文献DOI怎么找? 2511074
邀请新用户注册赠送积分活动 1486286
关于科研通互助平台的介绍 1457502