A general convergence analysis method for evolutionary multi-objective optimization algorithm

维数之咒 插值(计算机图形学) 趋同(经济学) 数学优化 帕累托原理 多目标优化 维数(图论) 计算机科学 进化算法 算法 数学 人工智能 经济 经济增长 运动(物理) 纯数学
作者
Tie Cai,Hui Wang
出处
期刊:Information Sciences [Elsevier]
卷期号:663: 120267-120267 被引量:4
标识
DOI:10.1016/j.ins.2024.120267
摘要

Convergence analysis of multi-objective optimization algorithm has been an area of vital interest to the research community. With this regard, a number of approaches have been proposed and studied. However, these studies and developed proposals cannot cope with more than 3-dimensional optimization problems. Generally speaking, interpolation planes are formed by 3-dimension data. So, when the dimensionality of the Pareto front is more than 3, the dimensionality of Pareto front will be reduced to 3 by involving principal component analysis. This may lead to some important data being missed. Due to missing data, the formed interpolation plane is usually inaccurate and uneven. This will give rise to difficulties to evaluate the distance between the Pareto front and the optimal Pareto front. Subsequently, it is not easy to evaluate exact convergence time and with this regard the existing solutions lack general. Having this in mind, this paper develops a general convergence analysis (GCAM) for evolutionary multi-objective optimization algorithm (EMOA). In this approach, two originality aspects come to existence: one associates with the interpolation plane convergence analysis while the second concerns the improved drift analysis of evolutionary algorithm. Firstly, for more than 3-dimensional space, the dimensionality of the Pareto front set becomes reduced to 3 through a locally linear embedding. This overcomes the irregular interpolation plane problem and produce a high-quality interpolation. Secondly, this study originally analyzes the convergence of EMOA by engaging an improved drift analysis. Finally, we determine the first stopping time of EMOA by analyzing the convergence metric. The experimental results demonstrate that the proposed method exhibits better performance in comparison with CAD, CAL, and CAC. Specifically, the error proportion of SMS-EMOA, AR-MOEA, SPEA2+SDE, GFM-MOEA has been decreased by 12%, 15%, 21%, 19% and 17%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯李iko完成签到,获得积分10
刚刚
于芋菊完成签到,获得积分0
刚刚
丘比特应助清爽白开水采纳,获得10
1秒前
1秒前
科研通AI2S应助Johnpick采纳,获得10
1秒前
windli发布了新的文献求助10
2秒前
2秒前
传奇3应助FB采纳,获得10
3秒前
李爱国应助你好谢谢你采纳,获得10
3秒前
可靠的书桃应助kaka091采纳,获得10
3秒前
luoqin发布了新的文献求助10
3秒前
4秒前
默欢完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
科研通AI2S应助拔剑起蒿莱采纳,获得30
6秒前
6秒前
小蜗牛完成签到,获得积分10
6秒前
ccciii完成签到,获得积分10
7秒前
共享精神应助zzz采纳,获得10
8秒前
舒服的牛排完成签到,获得积分20
8秒前
8秒前
坦率的寻凝完成签到,获得积分10
8秒前
长孙兰溪发布了新的文献求助10
8秒前
无限馒头完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
逍遥发布了新的文献求助10
10秒前
葭月十七发布了新的文献求助10
10秒前
小二郎应助小董不懂采纳,获得10
10秒前
ccciii发布了新的文献求助10
10秒前
stop here发布了新的文献求助10
11秒前
msy发布了新的文献求助10
11秒前
12秒前
热心书竹发布了新的文献求助10
13秒前
感谢云居转发科研通微信,获得积分50
13秒前
拼搏山槐完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847