清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A general convergence analysis method for evolutionary multi-objective optimization algorithm

维数之咒 插值(计算机图形学) 趋同(经济学) 数学优化 帕累托原理 多目标优化 维数(图论) 计算机科学 进化算法 算法 数学 人工智能 经济增长 运动(物理) 经济 纯数学
作者
Tie Cai,Hui Wang
出处
期刊:Information Sciences [Elsevier]
卷期号:663: 120267-120267 被引量:4
标识
DOI:10.1016/j.ins.2024.120267
摘要

Convergence analysis of multi-objective optimization algorithm has been an area of vital interest to the research community. With this regard, a number of approaches have been proposed and studied. However, these studies and developed proposals cannot cope with more than 3-dimensional optimization problems. Generally speaking, interpolation planes are formed by 3-dimension data. So, when the dimensionality of the Pareto front is more than 3, the dimensionality of Pareto front will be reduced to 3 by involving principal component analysis. This may lead to some important data being missed. Due to missing data, the formed interpolation plane is usually inaccurate and uneven. This will give rise to difficulties to evaluate the distance between the Pareto front and the optimal Pareto front. Subsequently, it is not easy to evaluate exact convergence time and with this regard the existing solutions lack general. Having this in mind, this paper develops a general convergence analysis (GCAM) for evolutionary multi-objective optimization algorithm (EMOA). In this approach, two originality aspects come to existence: one associates with the interpolation plane convergence analysis while the second concerns the improved drift analysis of evolutionary algorithm. Firstly, for more than 3-dimensional space, the dimensionality of the Pareto front set becomes reduced to 3 through a locally linear embedding. This overcomes the irregular interpolation plane problem and produce a high-quality interpolation. Secondly, this study originally analyzes the convergence of EMOA by engaging an improved drift analysis. Finally, we determine the first stopping time of EMOA by analyzing the convergence metric. The experimental results demonstrate that the proposed method exhibits better performance in comparison with CAD, CAL, and CAC. Specifically, the error proportion of SMS-EMOA, AR-MOEA, SPEA2+SDE, GFM-MOEA has been decreased by 12%, 15%, 21%, 19% and 17%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ybwei2008_163发布了新的文献求助10
2秒前
naczx完成签到,获得积分0
2秒前
健忘的晓小完成签到 ,获得积分10
4秒前
午午午午完成签到 ,获得积分10
5秒前
coding完成签到,获得积分10
8秒前
夜话风陵杜完成签到 ,获得积分0
11秒前
SciGPT应助ybwei2008_163采纳,获得10
26秒前
酷波er应助keke采纳,获得10
29秒前
HY完成签到 ,获得积分10
35秒前
38秒前
keke发布了新的文献求助10
44秒前
qin完成签到 ,获得积分10
46秒前
飞龙在天完成签到 ,获得积分10
46秒前
老实的乐儿完成签到 ,获得积分10
48秒前
充电宝应助ybwei2008_163采纳,获得10
51秒前
丘比特应助陈杰采纳,获得10
56秒前
1分钟前
大个应助SONGREN采纳,获得20
1分钟前
李爱国应助Developing_human采纳,获得10
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
loom完成签到 ,获得积分10
1分钟前
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
bkagyin应助良月三十采纳,获得10
1分钟前
高兴的天川完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
上官若男应助ybwei2008_163采纳,获得10
1分钟前
小小咸鱼完成签到 ,获得积分10
1分钟前
Ava应助ybwei2008_163采纳,获得10
1分钟前
1分钟前
陈杰完成签到,获得积分10
1分钟前
1分钟前
SONGREN发布了新的文献求助20
1分钟前
陈杰发布了新的文献求助10
2分钟前
小二郎应助Jeff采纳,获得10
2分钟前
海英完成签到,获得积分10
2分钟前
程小柒完成签到 ,获得积分10
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664650
求助须知:如何正确求助?哪些是违规求助? 4867676
关于积分的说明 15108309
捐赠科研通 4823315
什么是DOI,文献DOI怎么找? 2582234
邀请新用户注册赠送积分活动 1536272
关于科研通互助平台的介绍 1494672