A general convergence analysis method for evolutionary multi-objective optimization algorithm

维数之咒 插值(计算机图形学) 趋同(经济学) 数学优化 帕累托原理 多目标优化 维数(图论) 计算机科学 进化算法 算法 数学 人工智能 经济 经济增长 运动(物理) 纯数学
作者
Tie Cai,Hui Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:663: 120267-120267 被引量:4
标识
DOI:10.1016/j.ins.2024.120267
摘要

Convergence analysis of multi-objective optimization algorithm has been an area of vital interest to the research community. With this regard, a number of approaches have been proposed and studied. However, these studies and developed proposals cannot cope with more than 3-dimensional optimization problems. Generally speaking, interpolation planes are formed by 3-dimension data. So, when the dimensionality of the Pareto front is more than 3, the dimensionality of Pareto front will be reduced to 3 by involving principal component analysis. This may lead to some important data being missed. Due to missing data, the formed interpolation plane is usually inaccurate and uneven. This will give rise to difficulties to evaluate the distance between the Pareto front and the optimal Pareto front. Subsequently, it is not easy to evaluate exact convergence time and with this regard the existing solutions lack general. Having this in mind, this paper develops a general convergence analysis (GCAM) for evolutionary multi-objective optimization algorithm (EMOA). In this approach, two originality aspects come to existence: one associates with the interpolation plane convergence analysis while the second concerns the improved drift analysis of evolutionary algorithm. Firstly, for more than 3-dimensional space, the dimensionality of the Pareto front set becomes reduced to 3 through a locally linear embedding. This overcomes the irregular interpolation plane problem and produce a high-quality interpolation. Secondly, this study originally analyzes the convergence of EMOA by engaging an improved drift analysis. Finally, we determine the first stopping time of EMOA by analyzing the convergence metric. The experimental results demonstrate that the proposed method exhibits better performance in comparison with CAD, CAL, and CAC. Specifically, the error proportion of SMS-EMOA, AR-MOEA, SPEA2+SDE, GFM-MOEA has been decreased by 12%, 15%, 21%, 19% and 17%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Annnn完成签到,获得积分10
1秒前
zhen完成签到,获得积分10
2秒前
2秒前
foreverchoi完成签到,获得积分10
2秒前
还行吧完成签到 ,获得积分10
2秒前
淡定井完成签到 ,获得积分10
2秒前
穷到吃不起饭完成签到,获得积分10
2秒前
积极的邪欢完成签到,获得积分10
3秒前
3秒前
情怀应助科研通管家采纳,获得10
3秒前
4秒前
晴天霹雳3732完成签到,获得积分0
4秒前
5秒前
tk完成签到 ,获得积分10
5秒前
眯眯眼的海完成签到,获得积分10
5秒前
善良酸奶关注了科研通微信公众号
5秒前
又夏完成签到,获得积分10
5秒前
deer完成签到,获得积分10
6秒前
时尚的菠萝完成签到,获得积分10
6秒前
啥也做不出来的小谭完成签到,获得积分10
6秒前
复杂曲奇完成签到,获得积分10
6秒前
Andy_111完成签到,获得积分10
6秒前
Bill完成签到 ,获得积分10
6秒前
所所应助alc采纳,获得10
6秒前
majf发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
芝士椰果完成签到,获得积分10
9秒前
躺平摆烂小饼干完成签到,获得积分10
9秒前
10秒前
书双完成签到,获得积分10
10秒前
lokiuiw发布了新的文献求助10
10秒前
Tian完成签到 ,获得积分10
12秒前
苏苏爱学习完成签到 ,获得积分10
12秒前
wcuzhl完成签到,获得积分10
12秒前
13秒前
Pampers完成签到,获得积分10
13秒前
往事随风完成签到,获得积分10
13秒前
JJ完成签到,获得积分10
13秒前
高分求助中
Nickel, Cobalt and Palladium Catalysed Infarction with Ventricular following rich structural diversity 1000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968608
求助须知:如何正确求助?哪些是违规求助? 3513486
关于积分的说明 11168243
捐赠科研通 3248926
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804676