A general convergence analysis method for evolutionary multi-objective optimization algorithm

维数之咒 插值(计算机图形学) 趋同(经济学) 数学优化 帕累托原理 多目标优化 维数(图论) 计算机科学 进化算法 算法 数学 人工智能 经济增长 运动(物理) 经济 纯数学
作者
Tie Cai,Hui Wang
出处
期刊:Information Sciences [Elsevier]
卷期号:663: 120267-120267 被引量:4
标识
DOI:10.1016/j.ins.2024.120267
摘要

Convergence analysis of multi-objective optimization algorithm has been an area of vital interest to the research community. With this regard, a number of approaches have been proposed and studied. However, these studies and developed proposals cannot cope with more than 3-dimensional optimization problems. Generally speaking, interpolation planes are formed by 3-dimension data. So, when the dimensionality of the Pareto front is more than 3, the dimensionality of Pareto front will be reduced to 3 by involving principal component analysis. This may lead to some important data being missed. Due to missing data, the formed interpolation plane is usually inaccurate and uneven. This will give rise to difficulties to evaluate the distance between the Pareto front and the optimal Pareto front. Subsequently, it is not easy to evaluate exact convergence time and with this regard the existing solutions lack general. Having this in mind, this paper develops a general convergence analysis (GCAM) for evolutionary multi-objective optimization algorithm (EMOA). In this approach, two originality aspects come to existence: one associates with the interpolation plane convergence analysis while the second concerns the improved drift analysis of evolutionary algorithm. Firstly, for more than 3-dimensional space, the dimensionality of the Pareto front set becomes reduced to 3 through a locally linear embedding. This overcomes the irregular interpolation plane problem and produce a high-quality interpolation. Secondly, this study originally analyzes the convergence of EMOA by engaging an improved drift analysis. Finally, we determine the first stopping time of EMOA by analyzing the convergence metric. The experimental results demonstrate that the proposed method exhibits better performance in comparison with CAD, CAL, and CAC. Specifically, the error proportion of SMS-EMOA, AR-MOEA, SPEA2+SDE, GFM-MOEA has been decreased by 12%, 15%, 21%, 19% and 17%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大力牌皮揣子完成签到 ,获得积分10
2秒前
rissun发布了新的文献求助100
3秒前
3秒前
ywzwszl完成签到,获得积分0
4秒前
4秒前
5秒前
reading gene完成签到,获得积分10
5秒前
小张完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
神勇的惜文完成签到,获得积分10
6秒前
媛媛完成签到 ,获得积分10
6秒前
lijinyu发布了新的文献求助10
6秒前
李健的小迷弟应助xiaoyu采纳,获得10
6秒前
胖芭蕉完成签到,获得积分10
7秒前
小二郎应助charint采纳,获得10
7秒前
涵Allen完成签到,获得积分10
7秒前
zzz发布了新的文献求助10
9秒前
慕青应助aging123采纳,获得10
9秒前
晚熟稻完成签到,获得积分10
9秒前
李华完成签到 ,获得积分10
10秒前
10秒前
小张发布了新的文献求助10
10秒前
涵Allen发布了新的文献求助10
10秒前
萤火虫完成签到 ,获得积分10
11秒前
小华安完成签到,获得积分20
11秒前
nanana完成签到,获得积分10
11秒前
11秒前
Nick_YFWS完成签到,获得积分10
11秒前
tanfor发布了新的文献求助10
12秒前
12秒前
高山发布了新的文献求助10
12秒前
Ashley完成签到,获得积分10
13秒前
平凡完成签到,获得积分10
13秒前
14秒前
xiaoxi完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305347
求助须知:如何正确求助?哪些是违规求助? 4451536
关于积分的说明 13852225
捐赠科研通 4338937
什么是DOI,文献DOI怎么找? 2382253
邀请新用户注册赠送积分活动 1377338
关于科研通互助平台的介绍 1344780