A general convergence analysis method for evolutionary multi-objective optimization algorithm

维数之咒 插值(计算机图形学) 趋同(经济学) 数学优化 帕累托原理 多目标优化 维数(图论) 计算机科学 进化算法 算法 数学 人工智能 经济增长 运动(物理) 经济 纯数学
作者
Tie Cai,Hui Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:663: 120267-120267 被引量:4
标识
DOI:10.1016/j.ins.2024.120267
摘要

Convergence analysis of multi-objective optimization algorithm has been an area of vital interest to the research community. With this regard, a number of approaches have been proposed and studied. However, these studies and developed proposals cannot cope with more than 3-dimensional optimization problems. Generally speaking, interpolation planes are formed by 3-dimension data. So, when the dimensionality of the Pareto front is more than 3, the dimensionality of Pareto front will be reduced to 3 by involving principal component analysis. This may lead to some important data being missed. Due to missing data, the formed interpolation plane is usually inaccurate and uneven. This will give rise to difficulties to evaluate the distance between the Pareto front and the optimal Pareto front. Subsequently, it is not easy to evaluate exact convergence time and with this regard the existing solutions lack general. Having this in mind, this paper develops a general convergence analysis (GCAM) for evolutionary multi-objective optimization algorithm (EMOA). In this approach, two originality aspects come to existence: one associates with the interpolation plane convergence analysis while the second concerns the improved drift analysis of evolutionary algorithm. Firstly, for more than 3-dimensional space, the dimensionality of the Pareto front set becomes reduced to 3 through a locally linear embedding. This overcomes the irregular interpolation plane problem and produce a high-quality interpolation. Secondly, this study originally analyzes the convergence of EMOA by engaging an improved drift analysis. Finally, we determine the first stopping time of EMOA by analyzing the convergence metric. The experimental results demonstrate that the proposed method exhibits better performance in comparison with CAD, CAL, and CAC. Specifically, the error proportion of SMS-EMOA, AR-MOEA, SPEA2+SDE, GFM-MOEA has been decreased by 12%, 15%, 21%, 19% and 17%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
debu9完成签到,获得积分10
刚刚
soory完成签到,获得积分10
3秒前
宓天问完成签到,获得积分10
5秒前
5秒前
bluesky完成签到,获得积分10
6秒前
叽里呱啦完成签到 ,获得积分10
6秒前
Distance发布了新的文献求助10
8秒前
9秒前
9秒前
专注灵凡完成签到,获得积分10
9秒前
Stageruner完成签到,获得积分10
9秒前
kiyo_v完成签到,获得积分10
9秒前
黄超超发布了新的文献求助10
10秒前
落寞剑成完成签到 ,获得积分10
10秒前
七子完成签到,获得积分10
10秒前
klio完成签到 ,获得积分10
11秒前
zzx396完成签到,获得积分0
12秒前
one完成签到 ,获得积分10
13秒前
十五完成签到,获得积分10
13秒前
ptjam完成签到 ,获得积分10
14秒前
神勇的晟睿完成签到 ,获得积分10
15秒前
15秒前
曾珍完成签到 ,获得积分10
15秒前
Muhi完成签到,获得积分10
15秒前
15秒前
自带蓝牙的土豆完成签到 ,获得积分10
16秒前
青羽落霞完成签到 ,获得积分10
17秒前
抹颜完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
22秒前
胡图图完成签到,获得积分10
23秒前
睡觉大王完成签到 ,获得积分10
24秒前
25秒前
25秒前
26秒前
26秒前
31秒前
玩命的十三完成签到 ,获得积分10
31秒前
寂寞的诗云完成签到,获得积分10
33秒前
我爱科研完成签到 ,获得积分10
33秒前
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022