Unsteady flow characteristics during runaway process in Francis turbine: Insights from numerical investigation

物理 机械 流量(数学) 涡轮机 过程(计算) 混流式水轮机 统计物理学 航空航天工程 经典力学 热力学 工程类 计算机科学 操作系统
作者
Yanyan Li,Longgang Sun,Pengcheng Guo
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:7
标识
DOI:10.1063/5.0182355
摘要

The runaway process in hydraulic turbines is characterized by unstable flow that results in the formation of vortex structures, pressure fluctuations, and energy dissipation. This study focuses on the unsteady flow characteristics of a Francis turbine during the runaway process using numerical simulations. The obtained runaway speed and discharge align well with the experimental results. The findings reveal that larger openings lead to more rapid attainment of the runaway speed. During the runaway process, extensive flow separation at the runner blade generates a columnar vortex, which obstructs the channel and dissipates energy. High-amplitude pressure fluctuations, with a frequency below 0.5 times the blade frequency, are observed in the flow passage components. These pressure fluctuations are attributed to forming a columnar vortex structure at the hub and a sheet vortex band at the trailing edge of the runner blade. A large opening leads to an earlier occurrence of high-amplitude pressure fluctuations, a gradual increase in the amplitude of low-frequency fluctuations, and a more intense force in the runner. An analysis of the energy dissipation characteristics using the energy balance equation reveals that turbulence plays a dominant role in energy transfer and dissipation during the runaway process. Additionally, the dissipation is caused by the formation of a columnar vortex structure induced by flow separation at the blade hub and the presence of a sheet vortex band at the trailing edge. Furthermore, the findings observe that energy conversion and dissipation within the runner channel intensify with increasing guide vane opening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向秋寒发布了新的文献求助10
刚刚
1秒前
nekoz发布了新的文献求助10
1秒前
水雾发布了新的文献求助10
2秒前
3秒前
张六六完成签到,获得积分10
4秒前
4秒前
Lee完成签到 ,获得积分10
6秒前
蓝天应助niko采纳,获得10
7秒前
愉快天亦发布了新的文献求助10
8秒前
zhanlan发布了新的文献求助10
9秒前
Aries完成签到,获得积分20
9秒前
勤奋橘子完成签到,获得积分10
10秒前
SciGPT应助leiyuekai采纳,获得10
10秒前
11秒前
缓慢凤凰发布了新的文献求助10
11秒前
烟花应助香菜头采纳,获得30
13秒前
量子星尘发布了新的文献求助10
14秒前
wanci应助zzh采纳,获得10
15秒前
16秒前
天天快乐应助落日出逃采纳,获得10
17秒前
赵永刚完成签到,获得积分10
17秒前
Aries关注了科研通微信公众号
17秒前
阿杰完成签到,获得积分10
18秒前
柒染完成签到 ,获得积分10
20秒前
小天完成签到 ,获得积分10
21秒前
22秒前
CR7应助李嘉图采纳,获得20
22秒前
我是老大应助曹博盛采纳,获得30
23秒前
小天关注了科研通微信公众号
24秒前
hao发布了新的文献求助10
25秒前
huangman完成签到,获得积分10
27秒前
28秒前
wz完成签到,获得积分10
30秒前
之组长了完成签到 ,获得积分10
30秒前
31秒前
苏世完成签到,获得积分10
32秒前
32秒前
光亮冬寒发布了新的文献求助10
32秒前
小高完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707