普鲁士蓝
苝
阴极
胺气处理
涂层
材料科学
化学
纳米技术
有机化学
分子
电极
电化学
物理化学
作者
Xin‐Yuan Fu,Lulu Zhang,Zhaoyao Chen,Yunkai Xu,Junxiu Wu,Chengcheng Wang,Xiaoxia Ding,Xuelin Yang,Jun Lü
摘要
Abstract Fe‐based Prussian blue (Fe‐PB) cathode material shows great application potential in sodium (Na)‐ion batteries due to its high theoretical capacity, long cycle life, low cost, and simple preparation process. However, the crystalline water and vacancies of Fe‐PB lattice, the low electrical conductivity, and the dissolution of metal ions lead to limited capacity and poor cycling stability. In this work, a perylene tetracarboxylic dianhydride amine (PTCDA) coating layer is successfully fabricated on the surface of Fe‐PB by a liquid‐phase method. The aminated PTCDA (PTCA) coating not only increases the specific surface area and electronic conductivity but also effectively reduces the crystalline water and vacancies, which avoids the erosion of Fe‐PB by electrolyte. Consequently, the PTCA layer reduces the charge transfer resistance, enhances the Na‐ion diffusion coefficient, and improves the structure stability. The PTCA‐coated Fe‐PB exhibits superior Na storage performance with a first discharge capacity of 145.2 mAh g −1 at 100 mA g −1 . Long cycling tests exhibit minimal capacity decay of 0.027% per cycle over 1000 cycles at 1 A g −1 . Therefore, this PTCA coating strategy has shown promising competence in enhancing the electrochemical performance of Fe‐PB, which can potentially serve as a universal electrode coating strategy for Na‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI