Mechanisms underlying the therapeutic effects of cinobufagin in treating melanoma based on network pharmacology, single-cell RNA sequencing data, molecular docking, and molecular dynamics simulation

黑色素瘤 小桶 生物 药物数据库 癌症研究 计算生物学 基因 基因表达 药理学 遗传学 药品 转录组
作者
Yang Jian-sheng,Chunchao Cheng,Zhuolin Wu
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:14 被引量:5
标识
DOI:10.3389/fphar.2023.1315965
摘要

Malignant melanoma is one of the most aggressive of cancers; if not treated early, it can metastasize rapidly. Therefore, drug therapy plays an important role in the treatment of melanoma. Cinobufagin, an active ingredient derived from Venenum bufonis, can inhibit the growth and development of melanoma. However, the mechanism underlying its therapeutic effects is unclear. The purpose of this study was to predict the potential targets of cinobufagin in melanoma. We gathered known and predicted targets for cinobufagin from four online databases. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were then performed. Gene expression data were downloaded from the GSE46517 dataset, and differential gene expression analysis and weighted gene correlation network analysis were performed to identify melanoma-related genes. Using input melanoma-related genes and drug targets in the STRING online database and applying molecular complex detection (MCODE) analysis, we identified key targets that may be the potential targets of cinobufagin in melanoma. Moreover, we assessed the distribution of the pharmacological targets of cinobufagin in melanoma key clusters using single-cell data from the GSE215120 dataset obtained from the Gene Expression Omnibus database. The crucial targets of cinobufagin in melanoma were identified from the intersection of key clusters with melanoma-related genes and drug targets. Receiver operating characteristic curve (ROC) analysis, survival analysis, molecular docking, and molecular dynamics simulation were performed to gain further insights. Our findings suggest that cinobufagin may affect melanoma by arresting the cell cycle by inhibiting three protein tyrosine/serine kinases (EGFR, ERBB2, and CDK2). However, our conclusions are not supported by relevant experimental data and require further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助炸鸡加热采纳,获得10
1秒前
琪琪扬扬发布了新的文献求助10
1秒前
lian完成签到,获得积分10
1秒前
yfy完成签到,获得积分10
1秒前
小鱼鱼Fish完成签到,获得积分10
1秒前
KL完成签到,获得积分10
2秒前
马美丽完成签到 ,获得积分10
2秒前
木子完成签到 ,获得积分10
2秒前
2秒前
jsl完成签到,获得积分10
3秒前
俭朴灵竹发布了新的文献求助30
3秒前
hbc完成签到,获得积分10
3秒前
默默诗筠完成签到,获得积分10
3秒前
3秒前
彭于晏应助谨慎严青采纳,获得10
3秒前
找找完成签到,获得积分10
3秒前
小爱完成签到,获得积分10
4秒前
pw完成签到,获得积分10
4秒前
可爱冬瓜完成签到,获得积分20
4秒前
chopin发布了新的文献求助10
4秒前
少年锦时完成签到,获得积分10
4秒前
醉熏的含烟完成签到,获得积分10
4秒前
热心乐驹完成签到,获得积分10
5秒前
5秒前
zncu完成签到,获得积分10
5秒前
5秒前
6秒前
钻石DrWang完成签到,获得积分10
6秒前
SciGPT应助驴小兔子采纳,获得10
6秒前
量子星尘发布了新的文献求助20
6秒前
nono完成签到 ,获得积分10
7秒前
求助人员发布了新的文献求助10
7秒前
anfly完成签到,获得积分10
8秒前
汉堡包应助yfy采纳,获得10
8秒前
kkkk完成签到,获得积分20
8秒前
日落发布了新的文献求助10
8秒前
9秒前
大大怪发布了新的文献求助10
10秒前
完美的橘子完成签到,获得积分10
10秒前
科研小天才完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977