Mechanisms underlying the therapeutic effects of cinobufagin in treating melanoma based on network pharmacology, single-cell RNA sequencing data, molecular docking, and molecular dynamics simulation

黑色素瘤 小桶 生物 药物数据库 癌症研究 计算生物学 基因 基因表达 药理学 遗传学 药品 转录组
作者
Yang Jian-sheng,Chunchao Cheng,Zhuolin Wu
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:14 被引量:5
标识
DOI:10.3389/fphar.2023.1315965
摘要

Malignant melanoma is one of the most aggressive of cancers; if not treated early, it can metastasize rapidly. Therefore, drug therapy plays an important role in the treatment of melanoma. Cinobufagin, an active ingredient derived from Venenum bufonis, can inhibit the growth and development of melanoma. However, the mechanism underlying its therapeutic effects is unclear. The purpose of this study was to predict the potential targets of cinobufagin in melanoma. We gathered known and predicted targets for cinobufagin from four online databases. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were then performed. Gene expression data were downloaded from the GSE46517 dataset, and differential gene expression analysis and weighted gene correlation network analysis were performed to identify melanoma-related genes. Using input melanoma-related genes and drug targets in the STRING online database and applying molecular complex detection (MCODE) analysis, we identified key targets that may be the potential targets of cinobufagin in melanoma. Moreover, we assessed the distribution of the pharmacological targets of cinobufagin in melanoma key clusters using single-cell data from the GSE215120 dataset obtained from the Gene Expression Omnibus database. The crucial targets of cinobufagin in melanoma were identified from the intersection of key clusters with melanoma-related genes and drug targets. Receiver operating characteristic curve (ROC) analysis, survival analysis, molecular docking, and molecular dynamics simulation were performed to gain further insights. Our findings suggest that cinobufagin may affect melanoma by arresting the cell cycle by inhibiting three protein tyrosine/serine kinases (EGFR, ERBB2, and CDK2). However, our conclusions are not supported by relevant experimental data and require further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
F_u发布了新的文献求助30
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
朴素尔蝶完成签到,获得积分10
3秒前
woleaisa发布了新的文献求助20
4秒前
真君山山长完成签到,获得积分10
5秒前
5秒前
沉醉的中国钵完成签到 ,获得积分10
6秒前
英俊的铭应助拾柒采纳,获得10
6秒前
6秒前
7秒前
7秒前
shen完成签到,获得积分10
7秒前
cccui发布了新的文献求助10
7秒前
zzn完成签到,获得积分10
8秒前
9秒前
蓝天白云完成签到,获得积分20
10秒前
icewcq完成签到,获得积分10
10秒前
123~!完成签到,获得积分10
11秒前
11秒前
11秒前
科研包发布了新的文献求助10
12秒前
小鱼干完成签到,获得积分10
12秒前
七七发布了新的文献求助10
12秒前
13秒前
15秒前
传奇3应助seedcui采纳,获得10
16秒前
喝水选手发布了新的文献求助10
16秒前
天天快乐应助sss采纳,获得10
17秒前
bkagyin应助AslenK采纳,获得10
17秒前
icewcq发布了新的文献求助10
17秒前
赵保钢发布了新的文献求助10
18秒前
小马甲应助jia采纳,获得10
19秒前
19秒前
科研通AI6应助七七采纳,获得10
20秒前
20秒前
21秒前
Owen应助蘸糖冰美式采纳,获得10
21秒前
鲤鱼凛发布了新的文献求助10
21秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536933
求助须知:如何正确求助?哪些是违规求助? 4624592
关于积分的说明 14592446
捐赠科研通 4565023
什么是DOI,文献DOI怎么找? 2502125
邀请新用户注册赠送积分活动 1480875
关于科研通互助平台的介绍 1452098