Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 医学 病理 电信 组合数学 万维网 无线
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助科研通管家采纳,获得10
2秒前
yznfly应助科研通管家采纳,获得200
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
只争朝夕应助squirrelcone采纳,获得10
2秒前
gkads发布了新的文献求助10
3秒前
搜集达人应助whs采纳,获得10
3秒前
隐形曼青应助千寻采纳,获得10
3秒前
4秒前
4秒前
4秒前
Lemonade完成签到,获得积分10
5秒前
5秒前
冷酷孤风发布了新的文献求助10
7秒前
maizencrna完成签到,获得积分10
7秒前
丘比特应助光轮2000采纳,获得10
8秒前
9秒前
10秒前
10秒前
csx应助Madelinephi采纳,获得10
10秒前
顾矜应助生物摸鱼大师采纳,获得10
11秒前
平常的如风完成签到,获得积分10
12秒前
核桃应助zyh采纳,获得30
12秒前
NexusExplorer应助青鸾却梦000采纳,获得10
13秒前
CipherSage应助暮商采纳,获得30
13秒前
shawn发布了新的文献求助10
14秒前
稳重幻嫣完成签到,获得积分20
15秒前
柚子发布了新的文献求助10
16秒前
柒月小鱼完成签到 ,获得积分10
16秒前
18秒前
19秒前
大模型应助柚子采纳,获得10
22秒前
漂流的云朵完成签到,获得积分10
23秒前
23秒前
23秒前
科研通AI6应助MoNeng采纳,获得10
24秒前
蓝天应助yyanxuemin919采纳,获得10
24秒前
shawn完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318