亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 医学 病理 电信 组合数学 万维网 无线
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Potato采纳,获得10
1秒前
小圭发布了新的文献求助30
3秒前
4秒前
李健应助Ahan采纳,获得10
5秒前
端庄千青发布了新的文献求助10
5秒前
syalonyui完成签到,获得积分10
5秒前
5秒前
饭团不吃鱼完成签到,获得积分10
5秒前
nazhang发布了新的文献求助10
10秒前
李爱国应助端庄千青采纳,获得10
11秒前
赘婿应助无奈母鸡采纳,获得10
16秒前
科研通AI6应助殷楷霖采纳,获得10
17秒前
天天快乐应助nazhang采纳,获得10
28秒前
28秒前
木齐Jay完成签到,获得积分10
29秒前
殷楷霖发布了新的文献求助10
34秒前
汉堡包应助吱吱吱吱采纳,获得10
37秒前
lyfsci完成签到,获得积分10
43秒前
高挑的白旋风完成签到,获得积分10
45秒前
鲤鱼笑南完成签到,获得积分10
48秒前
Green完成签到,获得积分10
53秒前
6666完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
冷酷哈密瓜完成签到,获得积分10
1分钟前
科研帽发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
吞吞完成签到 ,获得积分10
1分钟前
端庄千青发布了新的文献求助10
1分钟前
土豪的洋葱完成签到,获得积分10
1分钟前
Ahan发布了新的文献求助10
1分钟前
1分钟前
Yingzi发布了新的文献求助10
1分钟前
Orange应助端庄千青采纳,获得10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644480
求助须知:如何正确求助?哪些是违规求助? 4764238
关于积分的说明 15025149
捐赠科研通 4802869
什么是DOI,文献DOI怎么找? 2567659
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484792