清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 组合数学 万维网 病理 电信 无线 医学
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dasein完成签到 ,获得积分10
22秒前
随心所欲完成签到 ,获得积分10
23秒前
李园园发布了新的文献求助10
49秒前
月儿完成签到 ,获得积分10
57秒前
银鱼在游完成签到,获得积分10
1分钟前
chenying完成签到 ,获得积分0
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
海上生明月完成签到 ,获得积分10
1分钟前
1分钟前
朴素绿蝶发布了新的文献求助10
1分钟前
默默完成签到 ,获得积分10
2分钟前
yuyu877完成签到 ,获得积分10
2分钟前
蓝白完成签到,获得积分10
3分钟前
李肉多爱吃肉完成签到 ,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
赘婿应助完美芒果采纳,获得30
3分钟前
3分钟前
完美芒果发布了新的文献求助30
3分钟前
欢喜的早晨完成签到,获得积分10
3分钟前
4分钟前
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
Jessica完成签到,获得积分10
5分钟前
葡萄成熟时完成签到 ,获得积分10
5分钟前
酷炫抽屉完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
TOUHOUU完成签到 ,获得积分10
6分钟前
trophozoite完成签到 ,获得积分10
6分钟前
wodetaiyangLLL完成签到 ,获得积分10
7分钟前
7分钟前
Gryff完成签到 ,获得积分10
7分钟前
D調完成签到,获得积分10
8分钟前
高高天亦完成签到 ,获得积分10
8分钟前
王一一完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368188
求助须知:如何正确求助?哪些是违规求助? 4496125
关于积分的说明 13996660
捐赠科研通 4401212
什么是DOI,文献DOI怎么找? 2417724
邀请新用户注册赠送积分活动 1410453
关于科研通互助平台的介绍 1386142