已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 医学 病理 电信 组合数学 万维网 无线
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zfh1341发布了新的文献求助10
1秒前
Erich完成签到 ,获得积分10
1秒前
2秒前
SuyingGuo发布了新的文献求助10
2秒前
2秒前
Akim应助高挑的小虾米采纳,获得10
3秒前
夏小胖发布了新的文献求助10
3秒前
顾矜应助tang采纳,获得10
3秒前
就看最后一篇完成签到 ,获得积分0
5秒前
顾良发布了新的文献求助20
7秒前
陶醉的蜜蜂完成签到,获得积分10
8秒前
SOBER刘晗发布了新的文献求助10
8秒前
Anoxra完成签到 ,获得积分10
10秒前
Chemistry完成签到 ,获得积分10
11秒前
zfh1341完成签到,获得积分10
12秒前
娄心昊应助尹忆梅采纳,获得30
13秒前
14秒前
崔梦楠完成签到 ,获得积分10
14秒前
希望天下0贩的0应助杨立采纳,获得10
15秒前
秋老众少年完成签到 ,获得积分10
16秒前
夏小胖完成签到,获得积分10
16秒前
聪明勇敢有力气完成签到 ,获得积分10
17秒前
17秒前
豆豆眼完成签到,获得积分20
17秒前
19秒前
时梦冉发布了新的文献求助10
21秒前
科研通AI6应助夏小胖采纳,获得10
22秒前
朱朱完成签到,获得积分10
22秒前
杨立完成签到,获得积分10
24秒前
Amelia完成签到 ,获得积分10
25秒前
浮游应助醉熏的冬易采纳,获得10
26秒前
醒了没醒醒完成签到 ,获得积分10
26秒前
沉静的安青完成签到,获得积分10
27秒前
欣欣完成签到 ,获得积分10
30秒前
30秒前
123321完成签到 ,获得积分10
31秒前
alanbike完成签到,获得积分10
31秒前
GingerF应助科研通管家采纳,获得50
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497938
求助须知:如何正确求助?哪些是违规求助? 4595334
关于积分的说明 14448871
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481306
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438169