Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 医学 病理 电信 组合数学 万维网 无线
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ypyy完成签到,获得积分10
1秒前
黄花完成签到 ,获得积分10
2秒前
Picachu完成签到 ,获得积分10
2秒前
开朗的仰应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
笑点低的衫完成签到,获得积分10
4秒前
李1应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
ccm应助科研通管家采纳,获得10
5秒前
qingmoheng应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
XCXC应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539425
求助须知:如何正确求助?哪些是违规求助? 4626109
关于积分的说明 14597803
捐赠科研通 4567005
什么是DOI,文献DOI怎么找? 2503755
邀请新用户注册赠送积分活动 1481601
关于科研通互助平台的介绍 1453181