亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 组合数学 万维网 病理 电信 无线 医学
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
GIA完成签到,获得积分10
24秒前
50秒前
浮游应助科研通管家采纳,获得10
51秒前
1分钟前
快乐飞丹发布了新的文献求助10
1分钟前
1分钟前
快乐飞丹完成签到,获得积分20
1分钟前
9527应助Wei采纳,获得10
2分钟前
大模型应助千堆雪claris采纳,获得10
2分钟前
充电宝应助平安喜乐采纳,获得10
2分钟前
2分钟前
2分钟前
研友_nEWRJ8完成签到,获得积分10
2分钟前
2分钟前
平安喜乐发布了新的文献求助10
2分钟前
天天快乐应助西西娃儿采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
深情安青应助平安喜乐采纳,获得10
2分钟前
3分钟前
Wei发布了新的文献求助10
3分钟前
平安喜乐发布了新的文献求助10
3分钟前
3分钟前
西西娃儿发布了新的文献求助10
3分钟前
Jie关闭了Jie文献求助
4分钟前
李健应助平安喜乐采纳,获得10
4分钟前
4分钟前
4分钟前
Jie驳回了ding应助
4分钟前
西西娃儿发布了新的文献求助10
4分钟前
平安喜乐发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
大个应助动人的尔容采纳,获得10
4分钟前
5分钟前
Jie发布了新的文献求助200
5分钟前
非泥完成签到,获得积分10
5分钟前
Chris完成签到 ,获得积分0
5分钟前
Jie完成签到,获得积分10
5分钟前
wanci应助平安喜乐采纳,获得10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292612
求助须知:如何正确求助?哪些是违规求助? 4443079
关于积分的说明 13830884
捐赠科研通 4326534
什么是DOI,文献DOI怎么找? 2374944
邀请新用户注册赠送积分活动 1370275
关于科研通互助平台的介绍 1334824