Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 医学 病理 电信 组合数学 万维网 无线
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
如云发布了新的文献求助10
1秒前
angela给angela的求助进行了留言
1秒前
1秒前
XZZH完成签到,获得积分10
2秒前
2秒前
独特乘云发布了新的文献求助10
3秒前
WELXCNK发布了新的文献求助10
3秒前
setuin发布了新的文献求助10
4秒前
烟花应助aixue采纳,获得10
5秒前
CC完成签到,获得积分10
5秒前
tyh完成签到,获得积分10
5秒前
完美世界应助Huang采纳,获得10
6秒前
大李完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
乐乐乐乐乐乐应助大橙子采纳,获得10
8秒前
ylw发布了新的文献求助10
8秒前
独特乘云完成签到,获得积分10
9秒前
暮雨发布了新的文献求助10
9秒前
情怀应助zhaopeipei采纳,获得10
9秒前
9秒前
嘿嘿完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
李健应助zhuxiaonian采纳,获得10
10秒前
星辰大海应助setuin采纳,获得10
10秒前
1335804518完成签到 ,获得积分10
11秒前
12秒前
13秒前
Seyn发布了新的文献求助10
14秒前
SciGPT应助ylw采纳,获得10
14秒前
典雅牛青发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI5应助lh961129采纳,获得10
15秒前
WJH发布了新的文献求助10
16秒前
17秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066