亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 医学 病理 电信 组合数学 万维网 无线
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑾瑜玉完成签到 ,获得积分10
2秒前
FashionBoy应助NatureEnergy采纳,获得30
4秒前
16秒前
shhoing应助科研通管家采纳,获得10
34秒前
ataybabdallah完成签到,获得积分10
44秒前
新秀微博发布了新的文献求助10
53秒前
1分钟前
NatureEnergy发布了新的文献求助30
1分钟前
NatureEnergy完成签到,获得积分10
1分钟前
小小虾完成签到 ,获得积分10
1分钟前
CodeCraft应助Trip_wyb采纳,获得10
1分钟前
2分钟前
Trip_wyb发布了新的文献求助10
2分钟前
heisa发布了新的文献求助10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
阿绫完成签到 ,获得积分10
2分钟前
踏实的南琴完成签到 ,获得积分10
2分钟前
heisa完成签到,获得积分10
2分钟前
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
英勇的半蕾完成签到,获得积分20
4分钟前
十柒完成签到 ,获得积分10
4分钟前
大个应助新秀微博采纳,获得10
5分钟前
朱明完成签到 ,获得积分10
6分钟前
852应助科研通管家采纳,获得10
6分钟前
7分钟前
新秀微博发布了新的文献求助10
7分钟前
8分钟前
欢喜的文轩完成签到 ,获得积分10
8分钟前
8分钟前
落后的初柳完成签到,获得积分10
8分钟前
cllk发布了新的文献求助10
9分钟前
科研通AI6应助刘小艾采纳,获得10
9分钟前
我是老大应助cllk采纳,获得10
9分钟前
xiaoqian完成签到,获得积分10
9分钟前
9分钟前
cllk完成签到,获得积分10
9分钟前
亲情之友完成签到,获得积分10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558531
求助须知:如何正确求助?哪些是违规求助? 4643615
关于积分的说明 14671260
捐赠科研通 4584933
什么是DOI,文献DOI怎么找? 2515238
邀请新用户注册赠送积分活动 1489315
关于科研通互助平台的介绍 1459992