Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks

计算机科学 异构网络 同种类的 图形 生物网络 复杂网络 疾病 数据挖掘 机器学习 计算生物学 理论计算机科学 生物 数学 无线网络 医学 病理 电信 组合数学 万维网 无线
作者
Dengju Yao,Yun Deng,Xu Zhan,Xiaoming Zhan
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05672-2
摘要

Many biological studies have shown that lncRNAs regulate the expression of epigenetically related genes. The study of lncRNAs has helped to deepen our understanding of the pathogenesis of complex diseases at the molecular level. Due to the large number of lncRNAs and the complex and time-consuming nature of biological experiments, applying computer techniques to predict potential lncRNA-disease associations is very effective. To explore information between complex network structures, existing methods rely mainly on lncRNA and disease information. Metapaths have been applied to network models as an effective method for exploring information in heterogeneous graphs. However, existing methods are dominated by lncRNAs or disease nodes and tend to ignore the paths provided by intermediate nodes.We propose a deep learning model based on hierarchical graphical attention networks to predict unknown lncRNA-disease associations using multiple types of metapaths to extract features. We have named this model the MMHGAN. First, the model constructs a lncRNA-disease-miRNA heterogeneous graph based on known associations and two homogeneous graphs of lncRNAs and diseases. Second, for homogeneous graphs, the features of neighboring nodes are aggregated using a multihead attention mechanism. Third, for the heterogeneous graph, metapaths of different intermediate nodes are selected to construct subgraphs, and the importance of different types of metapaths is calculated and aggregated to obtain the final embedded features. Finally, the features are reconstructed using a fully connected layer to obtain the prediction results.We used a fivefold cross-validation method and obtained an average AUC value of 96.07% and an average AUPR value of 93.23%. Additionally, ablation experiments demonstrated the role of homogeneous graphs and different intermediate node path weights. In addition, we studied lung cancer, esophageal carcinoma, and breast cancer. Among the 15 lncRNAs associated with these diseases, 15, 12, and 14 lncRNAs were validated by the lncRNA Disease Database and the Lnc2Cancer Database, respectively.We compared the MMHGAN model with six existing models with better performance, and the case study demonstrated that the model was effective in predicting the correlation between potential lncRNAs and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76应助小样子采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
写不出来发布了新的文献求助10
1秒前
无私的妍发布了新的文献求助10
1秒前
锄大地发布了新的文献求助10
2秒前
木木木发布了新的文献求助10
2秒前
时光雨完成签到,获得积分10
3秒前
邵101711完成签到,获得积分10
3秒前
3秒前
BINbin完成签到,获得积分10
3秒前
活力的兔子完成签到,获得积分20
4秒前
4秒前
liu完成签到 ,获得积分10
5秒前
小盆呐发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
丹丹发布了新的文献求助10
7秒前
研友_O8W2PZ发布了新的文献求助10
7秒前
ACT完成签到 ,获得积分10
9秒前
9秒前
森林林林完成签到 ,获得积分10
10秒前
bioinforiver发布了新的文献求助30
10秒前
科研通AI6应助小盆呐采纳,获得10
11秒前
科研废物发布了新的文献求助10
11秒前
chopin发布了新的文献求助10
11秒前
Fareast发布了新的文献求助10
12秒前
12秒前
Juli完成签到,获得积分10
12秒前
13秒前
13秒前
xzy998应助画1采纳,获得10
13秒前
执着雪青完成签到,获得积分10
13秒前
研友_O8W2PZ完成签到,获得积分10
14秒前
123完成签到,获得积分10
16秒前
科研通AI6应助淋漓尽致采纳,获得10
17秒前
迟迟发布了新的文献求助10
17秒前
qinlonhl发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933345
求助须知:如何正确求助?哪些是违规求助? 4201607
关于积分的说明 13053837
捐赠科研通 3975580
什么是DOI,文献DOI怎么找? 2178495
邀请新用户注册赠送积分活动 1194810
关于科研通互助平台的介绍 1106195