Online state of health estimation of lithium-ion batteries through subspace system identification methods

健康状况 鉴定(生物学) 可靠性工程 子空间拓扑 锂(药物) 过程(计算) 计算机科学 均方误差 工程类 功率(物理) 电池(电) 人工智能 数学 统计 植物 物理 量子力学 生物 医学 内分泌学 操作系统
作者
Marcelo Miranda Camboim,Mateus Giesbrecht
出处
期刊:Journal of energy storage [Elsevier]
卷期号:85: 111091-111091 被引量:1
标识
DOI:10.1016/j.est.2024.111091
摘要

When Lithium-ion Batteries (LiBs) reach the end of their first life in electric vehicles (EVs), they can still be used in applications with lower power demands, a process known as second-life. However, to ensure that LiBs – or cells – removed from EVs operate safely, efficiently and reliably in a second application, several tests and procedures must be applied to study their internal conditions. Naturally, one of the most important parameters to be determined is the state of health (SoH). However, the available processes for determining the SoH of lithium-ion cells are limited by high costs, relatively long test times and the need for specific equipment, limiting the second-life market. Hence, this work proposes a methodology to estimate the SoH of lithium-ion cells, based on subspace system identification (SSI) methods, where the parameters estimated for the equivalent circuit model (ECM) of a given cell are associated with its SoH. To validate the proposed methodology, nine cell samples from the same manufacturer were considered, which were removed from heavy-duty EVs at the end of their first life. The obtained results showed that: (a) good approximations between the identified models and the actual cells were achieved, with root mean square error (RMSE) values as small as 1.32 mV; (b) SSI methods can be applied online, while the LiBs are still operating in the EV during their first life, eliminating the need of additional tests; and (c) there is a clear association between ECM parameters and the SoH, so it was possible to estimate the SoH of the samples with RMSE values varying from 2.11% to 3.34%. Therefore, the proposed methodology offers significant improvements when compared to the conventional capacity tests, including the possibility of estimating the SoH relatively fast, online and without the need for specific equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟大猫应助Hangerli采纳,获得20
刚刚
自信安荷完成签到,获得积分10
刚刚
1秒前
1秒前
赵OO发布了新的文献求助10
1秒前
daniel发布了新的文献求助10
2秒前
敦敦发布了新的文献求助10
2秒前
Apocalypse_zjz完成签到,获得积分10
3秒前
福尔摩曦发布了新的文献求助30
4秒前
开心发布了新的文献求助10
4秒前
zzzzz完成签到,获得积分10
4秒前
4秒前
赵银志完成签到 ,获得积分10
5秒前
5秒前
郭豪琪完成签到,获得积分10
6秒前
6秒前
麦兜完成签到 ,获得积分10
6秒前
慕青应助wjx采纳,获得10
8秒前
打打应助wjx采纳,获得30
8秒前
JamesPei应助wjx采纳,获得10
8秒前
可爱的函函应助wjx采纳,获得10
8秒前
深情安青应助wjx采纳,获得10
8秒前
在水一方应助wjx采纳,获得10
9秒前
科研通AI2S应助wjx采纳,获得10
9秒前
氮三氟甲基应助wjx采纳,获得10
9秒前
FashionBoy应助wjx采纳,获得30
9秒前
天天快乐应助wjx采纳,获得10
9秒前
ding应助一一采纳,获得10
10秒前
weishen完成签到,获得积分0
10秒前
10秒前
福尔摩曦完成签到,获得积分10
11秒前
11秒前
Feng发布了新的文献求助10
11秒前
聪明可爱小绘理应助高磊采纳,获得10
12秒前
wt完成签到,获得积分10
13秒前
444关闭了444文献求助
14秒前
ZYQ完成签到 ,获得积分10
14秒前
苏苏完成签到,获得积分10
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824