已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online state of health estimation of lithium-ion batteries through subspace system identification methods

健康状况 鉴定(生物学) 可靠性工程 子空间拓扑 锂(药物) 过程(计算) 计算机科学 均方误差 工程类 功率(物理) 电池(电) 人工智能 数学 统计 医学 生物 操作系统 量子力学 物理 内分泌学 植物
作者
Marcelo Miranda Camboim,Mateus Giesbrecht
出处
期刊:Journal of energy storage [Elsevier]
卷期号:85: 111091-111091 被引量:2
标识
DOI:10.1016/j.est.2024.111091
摘要

When Lithium-ion Batteries (LiBs) reach the end of their first life in electric vehicles (EVs), they can still be used in applications with lower power demands, a process known as second-life. However, to ensure that LiBs – or cells – removed from EVs operate safely, efficiently and reliably in a second application, several tests and procedures must be applied to study their internal conditions. Naturally, one of the most important parameters to be determined is the state of health (SoH). However, the available processes for determining the SoH of lithium-ion cells are limited by high costs, relatively long test times and the need for specific equipment, limiting the second-life market. Hence, this work proposes a methodology to estimate the SoH of lithium-ion cells, based on subspace system identification (SSI) methods, where the parameters estimated for the equivalent circuit model (ECM) of a given cell are associated with its SoH. To validate the proposed methodology, nine cell samples from the same manufacturer were considered, which were removed from heavy-duty EVs at the end of their first life. The obtained results showed that: (a) good approximations between the identified models and the actual cells were achieved, with root mean square error (RMSE) values as small as 1.32 mV; (b) SSI methods can be applied online, while the LiBs are still operating in the EV during their first life, eliminating the need of additional tests; and (c) there is a clear association between ECM parameters and the SoH, so it was possible to estimate the SoH of the samples with RMSE values varying from 2.11% to 3.34%. Therefore, the proposed methodology offers significant improvements when compared to the conventional capacity tests, including the possibility of estimating the SoH relatively fast, online and without the need for specific equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
行走De太阳花完成签到,获得积分10
3秒前
3秒前
柏木发布了新的文献求助10
4秒前
5秒前
彼黍离离完成签到 ,获得积分10
5秒前
rest发布了新的文献求助40
5秒前
holi完成签到 ,获得积分10
6秒前
6秒前
李健完成签到,获得积分10
7秒前
Jason发布了新的文献求助10
8秒前
大橘完成签到 ,获得积分10
8秒前
卡卡光波完成签到,获得积分10
9秒前
科研皇完成签到,获得积分10
10秒前
xiaochen发布了新的文献求助10
11秒前
在水一方应助Jason采纳,获得10
12秒前
迦心完成签到,获得积分10
12秒前
momo发布了新的文献求助10
13秒前
14秒前
changping应助陈cxz采纳,获得10
15秒前
知悉完成签到,获得积分10
15秒前
浮游应助木子李采纳,获得10
16秒前
24先生发布了新的文献求助10
16秒前
白啦啦完成签到 ,获得积分10
18秒前
罗斯完成签到,获得积分20
18秒前
18秒前
狗狗耳发布了新的文献求助10
19秒前
icecream完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
24秒前
大橘发布了新的文献求助10
25秒前
26秒前
26秒前
俺嫩爹发布了新的文献求助10
27秒前
left_right发布了新的文献求助10
29秒前
罗斯发布了新的文献求助10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300957
求助须知:如何正确求助?哪些是违规求助? 4448753
关于积分的说明 13846748
捐赠科研通 4334559
什么是DOI,文献DOI怎么找? 2379746
邀请新用户注册赠送积分活动 1374804
关于科研通互助平台的介绍 1340516