Online state of health estimation of lithium-ion batteries through subspace system identification methods

健康状况 鉴定(生物学) 可靠性工程 子空间拓扑 锂(药物) 过程(计算) 计算机科学 均方误差 工程类 功率(物理) 电池(电) 人工智能 数学 统计 植物 物理 量子力学 生物 医学 内分泌学 操作系统
作者
Marcelo Miranda Camboim,Mateus Giesbrecht
出处
期刊:Journal of energy storage [Elsevier]
卷期号:85: 111091-111091 被引量:1
标识
DOI:10.1016/j.est.2024.111091
摘要

When Lithium-ion Batteries (LiBs) reach the end of their first life in electric vehicles (EVs), they can still be used in applications with lower power demands, a process known as second-life. However, to ensure that LiBs – or cells – removed from EVs operate safely, efficiently and reliably in a second application, several tests and procedures must be applied to study their internal conditions. Naturally, one of the most important parameters to be determined is the state of health (SoH). However, the available processes for determining the SoH of lithium-ion cells are limited by high costs, relatively long test times and the need for specific equipment, limiting the second-life market. Hence, this work proposes a methodology to estimate the SoH of lithium-ion cells, based on subspace system identification (SSI) methods, where the parameters estimated for the equivalent circuit model (ECM) of a given cell are associated with its SoH. To validate the proposed methodology, nine cell samples from the same manufacturer were considered, which were removed from heavy-duty EVs at the end of their first life. The obtained results showed that: (a) good approximations between the identified models and the actual cells were achieved, with root mean square error (RMSE) values as small as 1.32 mV; (b) SSI methods can be applied online, while the LiBs are still operating in the EV during their first life, eliminating the need of additional tests; and (c) there is a clear association between ECM parameters and the SoH, so it was possible to estimate the SoH of the samples with RMSE values varying from 2.11% to 3.34%. Therefore, the proposed methodology offers significant improvements when compared to the conventional capacity tests, including the possibility of estimating the SoH relatively fast, online and without the need for specific equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未语的阳光完成签到 ,获得积分10
刚刚
Ch185完成签到,获得积分10
刚刚
心仔发布了新的文献求助10
1秒前
LiLy完成签到 ,获得积分10
2秒前
南城完成签到 ,获得积分10
2秒前
3秒前
3秒前
打工仔发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
乜三应助科研通管家采纳,获得20
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
俊逸沅完成签到,获得积分10
5秒前
JamesPei应助科研通管家采纳,获得30
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
szk完成签到,获得积分10
6秒前
6秒前
研友_Ze0vBn完成签到,获得积分10
6秒前
劲秉应助科研通管家采纳,获得10
6秒前
6秒前
douzi完成签到,获得积分10
6秒前
xiaozhao发布了新的文献求助10
6秒前
领导范儿应助Bravesunshine采纳,获得10
6秒前
燕儿完成签到,获得积分10
7秒前
香蕉觅云应助一只小鲨鱼采纳,获得10
7秒前
科研通AI2S应助活泼的枫叶采纳,获得50
8秒前
SciGPT应助Lemon采纳,获得10
8秒前
studystudy完成签到,获得积分10
8秒前
8秒前
Hello应助金启维采纳,获得10
8秒前
华华爸完成签到,获得积分20
9秒前
Rundstet发布了新的文献求助10
9秒前
友好的牛排完成签到,获得积分10
9秒前
9秒前
小马甲应助燕儿采纳,获得10
11秒前
中村優夏发布了新的文献求助10
11秒前
鲤鱼鸽子应助虚心碧采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299266
求助须知:如何正确求助?哪些是违规求助? 2934183
关于积分的说明 8467773
捐赠科研通 2607652
什么是DOI,文献DOI怎么找? 1423827
科研通“疑难数据库(出版商)”最低求助积分说明 661704
邀请新用户注册赠送积分活动 645391