Fabrication of (Ag, Zn, Co) based spinel ferrites as electrode materials for high energy density hybrid supercapacitors

超级电容器 尖晶石 制作 材料科学 能量密度 电极 冶金 纳米技术 工程物理 电容 化学 工程类 医学 替代医学 物理化学 病理
作者
Zahra Batool,Atiq ur Rehman,Ahmad Mukhtar,Muhammad Waqas Iqbal,Saikh Mohammad Wabaidur,Masoom Raza Siddiqui,Jeffrey T. Glass
出处
期刊:Journal of energy storage [Elsevier]
卷期号:79: 110092-110092 被引量:5
标识
DOI:10.1016/j.est.2023.110092
摘要

Three spinel ferrites, AgFe2O4, CoFe2O4, and ZnFe2O4, were successfully synthesized using the hydrothermal technique and were employed as electrode materials for supercapacitor applications. These spinel ferrites underwent a comprehensive assessment of their crystallinity, morphology, and electrochemical performance. The structural analysis using X-ray diffraction convincingly demonstrated the excellent crystallization of these compounds, indicating the development of single-phase spinel ferrites. A uniform cubic structure was successfully achieved. TEM analysis revealed that the as-synthesized nanomaterials exhibited a spherical shape with particle sizes ranging from 50 to 100 nm. In terms of electrochemical performance, utilizing a three-electrode configuration, the cubic spinel CoFe2O4 nanoparticles, synthesized at 200 °C, exhibited outstanding results, with a maximum specific capacitance of 2146.40 F/g at 3 mV/s, surpassing the performance of AgFe2O4 and ZnFe2O4. To create a hybrid asymmetric device utilizing all three spinel ferrites, activated carbon served as the negative electrode, while AgFe2O4, CoFe2O4, and ZnFe2O4 were employed as positive electrodes. Notably, the CoFe2O4 electrode outperformed the others, achieving a remarkable 94 % coulombic efficiency and demonstrating long-term cyclic stability with 87 % capacitance retention after 10,000 cycles. The findings of this study underscore the significant potential of the synthesized nanoparticles as promising candidates for hybrid supercapacitors and various other electrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助开心丹雪采纳,获得10
2秒前
科目三应助jewelliang采纳,获得10
2秒前
鹭点烟汀发布了新的文献求助10
2秒前
2秒前
rxyxiaoyu发布了新的文献求助10
3秒前
lv完成签到,获得积分10
3秒前
牙齿印咿呀咿呀伊哟完成签到,获得积分10
3秒前
失眠店员发布了新的文献求助10
4秒前
华仔应助niy6tyg采纳,获得10
4秒前
情怀应助阿苇采纳,获得10
6秒前
粱映菡完成签到,获得积分10
6秒前
6秒前
顾矜应助爱你不商量采纳,获得10
7秒前
甫_F发布了新的文献求助10
7秒前
miaomiao完成签到,获得积分10
7秒前
9秒前
zwj发布了新的文献求助10
10秒前
凉快关注了科研通微信公众号
11秒前
12秒前
小瑄完成签到,获得积分10
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
Loooong应助科研通管家采纳,获得10
13秒前
Alan邓佳鑫应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
Loooong应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得100
14秒前
嗯哼应助科研通管家采纳,获得20
14秒前
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
酷波er应助眯眯眼的电脑采纳,获得10
15秒前
15秒前
Cat应助lzm10010采纳,获得20
16秒前
高分求助中
Handbook of Fuel Cells, 6 Volume Set 1666
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 800
消化器内視鏡関連の偶発症に関する第7回全国調査報告2019〜2021年までの3年間 500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 冶金 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2863406
求助须知:如何正确求助?哪些是违规求助? 2469230
关于积分的说明 6696109
捐赠科研通 2159781
什么是DOI,文献DOI怎么找? 1147344
版权声明 585228
科研通“疑难数据库(出版商)”最低求助积分说明 563726