钙钛矿(结构)
材料科学
锡
串联
化学工程
结晶
扩散
热力学
冶金
物理
工程类
复合材料
作者
Wenjian Yan,Chongwen Li,Cheng Peng,Shuchen Tan,Jiakang Zhang,Haokun Jiang,Feifei Xin,Yue Fang,Zhongmin Zhou
标识
DOI:10.1002/adma.202312170
摘要
Abstract The rapid relaxation of hot carriers leads to energy loss in the form of heat and consequently restricts the theoretical efficiency of single‐junction solar cells; However, this issue has not received much attention in tin‐lead perovskites solar cells. Herein, tin(II) oxalate (SnC 2 O 4 ) is introduced into tin‐lead perovskite precursor solution to regulate hot‐carrier cooling dynamics. The addition of SnC 2 O 4 increases the length of carrier diffusion, extends the lifetime of carriers, and simultaneously slows down the cooling rate of carriers. Furthermore, SnC 2 O 4 can bond with uncoordinated Sn 2+ and Pb 2+ ions to regulate the crystallization of perovskite and enable large grains. The strongly reducing properties of the C 2 O 4 2− can inhibit the oxidation of Sn 2+ to Sn 4+ and minimize the formation of Sn vacancies in the resulting perovskite films. Additionally, as a substitute for tin(II) fluoride, the introduction of SnC 2 O 4 avoids the carrier transport issues caused by the aggregation of F – ions at the interface. As a result, the SnC 2 O 4 ‐treated Sn‐Pb cells show a champion efficiency of 23.36%, as well as 27.56% for the all‐perovskite tandem solar cells. Moreover, the SnC 2 O 4 ‐treated devices show excellent long‐term stability. This finding is expected to pave the way toward stable and highly efficient all‐perovskite tandem solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI