锆钛酸铅
压电
材料科学
纳米发生器
电介质
复合材料
压电系数
流延
PMUT公司
陶瓷
铁电性
光电子学
作者
Muhammad Latif,Yangxiaozhe Jiang,Jaehwan Kim
标识
DOI:10.1016/j.mtadv.2024.100478
摘要
Nanocellulose (NC)-based piezoelectric films prepared via solution casting show low mechanical, dielectric, and piezoelectric performance due to the randomly oriented cellulose nanofibers and dispersion of piezoelectric domains. Moreover, a high electric field for piezoelectric domain alignment may also increase the brittleness of the piezoelectric films. For the first time, an additive manufacturing (AM) technology is demonstrated to fabricate high mechanical strength and flexible NC-based piezoelectric films efficiently. Different concentrations (10, 20, and 30 wt%) of lead zirconate titanate (PZT) particles are mixed in the NC suspension and additively manufactured, followed by drying at cleanroom conditions. Next, the magnetically induced electric field is introduced into the PZT-NC films coated with silver electrodes. The obtained flexible piezoelectric PZT-NC films show outstanding mechanical strength of 203.5 ± 4.8 MPa, good flexibility, high dielectric constant (87.7 at 1 kHz), low dielectric loss (0.09 at 1 kHz), and high piezoelectric constant (d33 = 53 pC/N). Furthermore, the 30PZT-NC piezoelectric nanogenerator showed a peak-to-peak voltage of 2.24 V and an output power density of 1.56 μW/cm3. The measured mechanical, dielectric, and piezoelectric properties are superior to the previously reported NC-based piezoelectric and commercially available PVDF films. Based on the outstanding multifunctional properties of NC-based piezoelectric films, AM technology can replace traditional solution casting methods and open a wide range of applications in flexible piezoelectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI