已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Data Augmentation Method Based on Denoising Diffusion Probabilistic Model for Fault Diagnosis Under Imbalanced Data

概率逻辑 降噪 数据建模 计算机科学 断层(地质) 数据挖掘 人工智能 模式识别(心理学) 机器学习 地质学 数据库 地震学
作者
Xiongyan Yang,Tianyi Ye,Xianfeng Yuan,Weijie Zhu,Xiaoxue Mei,Fengyu Zhou
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 7820-7831 被引量:9
标识
DOI:10.1109/tii.2024.3366991
摘要

Imbalanced data constitute a significant challenge in intelligent fault diagnosis cases because they can result in degraded diagnosis accuracy, which can in turn jeopardize the safety and reliability of industrial equipment. Generative adversarial networks (GANs) have been effectively used as common data augmentation methods to address this issue. However, their training process is difficult to perform and prone to mode collapse. Therefore, this article proposes a novel data augmentation method grounded in a diffusion model. The proposed method generates samples through physical simulation rather than adversarial training, which avoids the instability and mode collapse issues faced by GANs, leading to a more stable training process. Moreover, the proposed method utilizes the characteristics of gradual diffusion and random sampling to enhance the authenticity and diversity of sample generation. In addition, in terms of evaluating generation models, most existing works do not have a unified and thorough evaluation framework. Therefore, a comprehensive evaluation framework is proposed to effectively and comprehensively evaluate the performance of data augmentation models. Finally, the proposed method is evaluated using an open-source dataset and two actual testbeds to validate its effectiveness. The experimental results show that our method can generate higher quality and more diverse pseudosamples, and achieve superior fault diagnosis performance under imbalanced data. Specifically, our approach achieves diagnosis accuracies of 97.00%, 96.48%, and 98.30% on the three different datasets, all of which are superior to those of the compared state-of-the-art data augmentation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ifegiugfieugfig完成签到,获得积分20
刚刚
andrele完成签到,获得积分10
4秒前
英姑应助陶醉的世德采纳,获得10
5秒前
Joker完成签到,获得积分10
7秒前
哇samm完成签到,获得积分10
12秒前
12秒前
13秒前
深情安青应助jiaximoduo采纳,获得100
14秒前
15秒前
19秒前
iamhawthorn发布了新的文献求助10
20秒前
22秒前
VDC应助高兴翅膀采纳,获得30
23秒前
jihenyouai0213完成签到,获得积分10
24秒前
24秒前
狸花小喵发布了新的文献求助10
27秒前
CodeCraft应助DreamRunner0410采纳,获得10
28秒前
杳鸢应助jiaximoduo采纳,获得10
32秒前
36秒前
狸花小喵完成签到,获得积分10
40秒前
tuanheqi应助仲半邪采纳,获得30
40秒前
VDC应助知性的雪糕采纳,获得30
40秒前
41秒前
42秒前
Serena510完成签到 ,获得积分10
42秒前
43秒前
44秒前
小马甲应助稳重的蜜蜂采纳,获得10
45秒前
49秒前
51秒前
llls完成签到 ,获得积分10
52秒前
anneke_完成签到,获得积分10
55秒前
57秒前
李健的小迷弟应助妞妞采纳,获得10
1分钟前
tuanheqi应助jiaximoduo采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得50
1分钟前
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
妞妞完成签到,获得积分20
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223779
求助须知:如何正确求助?哪些是违规求助? 2872209
关于积分的说明 8179340
捐赠科研通 2539100
什么是DOI,文献DOI怎么找? 1371152
科研通“疑难数据库(出版商)”最低求助积分说明 646021
邀请新用户注册赠送积分活动 620010