已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Data Augmentation Method Based on Denoising Diffusion Probabilistic Model for Fault Diagnosis Under Imbalanced Data

概率逻辑 降噪 数据建模 计算机科学 断层(地质) 数据挖掘 人工智能 模式识别(心理学) 机器学习 地质学 数据库 地震学
作者
Xiongyan Yang,Tianyi Ye,Xianfeng Yuan,Weijie Zhu,Xiaoxue Mei,Fengyu Zhou
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 7820-7831 被引量:90
标识
DOI:10.1109/tii.2024.3366991
摘要

Imbalanced data constitute a significant challenge in intelligent fault diagnosis cases because they can result in degraded diagnosis accuracy, which can in turn jeopardize the safety and reliability of industrial equipment. Generative adversarial networks (GANs) have been effectively used as common data augmentation methods to address this issue. However, their training process is difficult to perform and prone to mode collapse. Therefore, this article proposes a novel data augmentation method grounded in a diffusion model. The proposed method generates samples through physical simulation rather than adversarial training, which avoids the instability and mode collapse issues faced by GANs, leading to a more stable training process. Moreover, the proposed method utilizes the characteristics of gradual diffusion and random sampling to enhance the authenticity and diversity of sample generation. In addition, in terms of evaluating generation models, most existing works do not have a unified and thorough evaluation framework. Therefore, a comprehensive evaluation framework is proposed to effectively and comprehensively evaluate the performance of data augmentation models. Finally, the proposed method is evaluated using an open-source dataset and two actual testbeds to validate its effectiveness. The experimental results show that our method can generate higher quality and more diverse pseudosamples, and achieve superior fault diagnosis performance under imbalanced data. Specifically, our approach achieves diagnosis accuracies of 97.00%, 96.48%, and 98.30% on the three different datasets, all of which are superior to those of the compared state-of-the-art data augmentation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观完成签到 ,获得积分10
2秒前
3秒前
成就念芹完成签到,获得积分10
4秒前
8秒前
时不言完成签到 ,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
浮游应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
14秒前
iiuu完成签到,获得积分10
15秒前
Hello应助王瑾言采纳,获得10
15秒前
16秒前
东篱完成签到 ,获得积分10
16秒前
17秒前
依沐完成签到 ,获得积分10
18秒前
19秒前
iiuu发布了新的文献求助10
20秒前
沅沅发布了新的文献求助10
21秒前
22秒前
科研通AI6应助Bressanone采纳,获得10
26秒前
王瑾言发布了新的文献求助10
27秒前
皮皮完成签到 ,获得积分10
27秒前
30秒前
今后应助自信的钢笔采纳,获得10
33秒前
阔达凝天完成签到,获得积分10
36秒前
36秒前
37秒前
38秒前
f1ame发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522443
求助须知:如何正确求助?哪些是违规求助? 4613434
关于积分的说明 14538832
捐赠科研通 4551149
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446425