后门
黑匣子
散列函数
情态动词
计算机科学
人工智能
计算机安全
化学
高分子化学
作者
Tianshi Wang,Fengling Li,Lei Zhu,Jingjing Li,Zheng Zhang,Heng Tao Shen
出处
期刊:ACM Transactions on Information Systems
日期:2024-03-02
卷期号:42 (4): 1-27
摘要
Deep cross-modal hashing has promoted the field of multi-modal retrieval due to its excellent efficiency and storage, but its vulnerability to backdoor attacks is rarely studied. Notably, current deep cross-modal hashing methods inevitably require large-scale training data, resulting in poisoned samples with imperceptible triggers that can easily be camouflaged into the training data to bury backdoors in the victim model. Nevertheless, existing backdoor attacks focus on the uni-modal vision domain, while the multi-modal gap and hash quantization weaken their attack performance. In addressing the aforementioned challenges, we undertake an invisible black-box backdoor attack against deep cross-modal hashing retrieval in this article. To the best of our knowledge, this is the first attempt in this research field. Specifically, we develop a flexible trigger generator to generate the attacker’s specified triggers, which learns the sample semantics of the non-poisoned modality to bridge the cross-modal attack gap. Then, we devise an input-aware injection network, which embeds the generated triggers into benign samples in the form of sample-specific stealth and realizes cross-modal semantic interaction between triggers and poisoned samples. Owing to the knowledge-agnostic of victim models, we enable any cross-modal hashing knockoff to facilitate the black-box backdoor attack and alleviate the attack weakening of hash quantization. Moreover, we propose a confusing perturbation and mask strategy to induce the high-performance victim models to focus on imperceptible triggers in poisoned samples. Extensive experiments on benchmark datasets demonstrate that our method has a state-of-the-art attack performance against deep cross-modal hashing retrieval. Besides, we investigate the influences of transferable attacks, few-shot poisoning, multi-modal poisoning, perceptibility, and potential defenses on backdoor attacks. Our codes and datasets are available at https://github.com/tswang0116/IB3A.
科研通智能强力驱动
Strongly Powered by AbleSci AI