Invisible Black-Box Backdoor Attack against Deep Cross-Modal Hashing Retrieval

后门 黑匣子 散列函数 情态动词 计算机科学 人工智能 计算机安全 化学 高分子化学
作者
Tianshi Wang,Fengling Li,Lei Zhu,Jingjing Li,Zheng Zhang,Heng Tao Shen
出处
期刊:ACM Transactions on Information Systems 卷期号:42 (4): 1-27
标识
DOI:10.1145/3650205
摘要

Deep cross-modal hashing has promoted the field of multi-modal retrieval due to its excellent efficiency and storage, but its vulnerability to backdoor attacks is rarely studied. Notably, current deep cross-modal hashing methods inevitably require large-scale training data, resulting in poisoned samples with imperceptible triggers that can easily be camouflaged into the training data to bury backdoors in the victim model. Nevertheless, existing backdoor attacks focus on the uni-modal vision domain, while the multi-modal gap and hash quantization weaken their attack performance. In addressing the aforementioned challenges, we undertake an invisible black-box backdoor attack against deep cross-modal hashing retrieval in this article. To the best of our knowledge, this is the first attempt in this research field. Specifically, we develop a flexible trigger generator to generate the attacker’s specified triggers, which learns the sample semantics of the non-poisoned modality to bridge the cross-modal attack gap. Then, we devise an input-aware injection network, which embeds the generated triggers into benign samples in the form of sample-specific stealth and realizes cross-modal semantic interaction between triggers and poisoned samples. Owing to the knowledge-agnostic of victim models, we enable any cross-modal hashing knockoff to facilitate the black-box backdoor attack and alleviate the attack weakening of hash quantization. Moreover, we propose a confusing perturbation and mask strategy to induce the high-performance victim models to focus on imperceptible triggers in poisoned samples. Extensive experiments on benchmark datasets demonstrate that our method has a state-of-the-art attack performance against deep cross-modal hashing retrieval. Besides, we investigate the influences of transferable attacks, few-shot poisoning, multi-modal poisoning, perceptibility, and potential defenses on backdoor attacks. Our codes and datasets are available at https://github.com/tswang0116/IB3A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shanshan完成签到,获得积分10
1秒前
JY完成签到,获得积分10
1秒前
3秒前
3秒前
柔弱诗筠关注了科研通微信公众号
4秒前
顾矜应助谷贝贝采纳,获得10
4秒前
Hou完成签到,获得积分10
6秒前
7秒前
10秒前
xxxidgkris应助萧水白采纳,获得100
10秒前
level完成签到,获得积分10
10秒前
天天完成签到 ,获得积分10
11秒前
12秒前
难过怜雪发布了新的文献求助20
12秒前
酷波er应助周丫丫采纳,获得10
13秒前
你是我的小月亮完成签到,获得积分10
13秒前
王建平完成签到 ,获得积分10
16秒前
wujingshuai完成签到,获得积分10
18秒前
科研通AI2S应助breath采纳,获得10
18秒前
sssss发布了新的文献求助10
19秒前
Mircale发布了新的文献求助10
19秒前
20秒前
背后的鸭子完成签到 ,获得积分10
22秒前
难过怜雪完成签到,获得积分10
22秒前
22秒前
24秒前
24秒前
25秒前
26秒前
28秒前
开朗以亦发布了新的文献求助10
29秒前
31秒前
周丫丫发布了新的文献求助10
31秒前
萧水白发布了新的文献求助100
33秒前
tangyuan完成签到,获得积分10
33秒前
。。。完成签到,获得积分10
34秒前
yelele发布了新的文献求助10
36秒前
38秒前
要减肥的夜天完成签到,获得积分20
39秒前
赘婿应助jojo采纳,获得10
39秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147998
求助须知:如何正确求助?哪些是违规求助? 2799021
关于积分的说明 7833250
捐赠科研通 2456174
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620