(Invited) Optimizing the Binder Distribution in Battery Electrodes with Manufacturing Process Simulations and Machine Learning

电池(电) 过程(计算) 电极 计算机科学 材料科学 制造工艺 机械工程 工程类 复合材料 化学 物理 热力学 功率(物理) 物理化学 操作系统
作者
Alejandro A. Franco
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (6): 900-900
标识
DOI:10.1149/ma2023-026900mtgabs
摘要

The performance of lithium-ion battery cells strongly depends on the microstructure of the electrodes, which is determined by the spatial distribution of the active material, carbon additive, binder, and pores within the electrode volume. The manufacturing process determines this spatial distribution, which, in turn, determines the interfaces between these materials and the pores, thereby impacting the practical properties of the electrodes, such as their electrical conductivity, energy density, and wettability. The binder plays a crucial role in this process, as its spatial distribution controls the degree of percolation between the particles and the adhesion of the electrode with the current collector. Since 2017, we have been developing the ARTISTIC computational platform, 1 which constitutes a digital twin of the battery electrode and cell manufacturing process. Supported by a combination of physics-based models and machine learning, this platform has been demonstrated by us for lithium-ion, sodium-ion, and solid-state batteries with electrodes produced by wet processing. 2 The platform simulates each step of the manufacturing process, including mixing, coating/drying, calendering, electrolyte infiltration, and resulting cell performance. It allows for predicting 3D-resolved electrode and cell sandwich microstructures with their associated electrochemical performance as a function of the manufacturing parameters. In this talk, I will discuss how the ARTISTIC computational platform can optimize the spatial distribution of active material, carbon additive, and binder within the electrode volume. Using Bayesian Optimization, the platform predicts the manufacturing parameters required to obtain optimal electrodes in terms of several properties, such as electric conductivity, tortuosity factor, electroactive surface area, and energy density. I will particularly discuss the platform's capabilities to capture the adhesion of the electrode with the current collector through the binder. Additionally, I will present an extension of this digital twin for the 3D-resolved simulation of the dry processing of active material, carbon additive, and binder based on extrusion and compare the results (in the form of 3D-resolved electrode microstructures) with experimental data. Results from the wet and dry processing simulations will be discussed for electrodes made with different active material chemistries, such as NMC and LFP, and the crucial role of the binder in the heterogeneity of lithiation/delithiation of the electrodes upon their electrochemical cycling will be explored. Finally, building on our previously reported virtual reality digital tools for battery manufacturing, 3 I will present a novel virtual reality interface that allows for the interactive and immersive use of the ARTISTIC computational platform to track the influence of manufacturing parameters on the active material, carbon additive, and binder's spatial location, as well as the resulting electrode properties. I will conclude by discussing why this virtual interface is also a powerful tool to assist in the electrode manufacturing optimization. References 1. Website of the ARTISTIC project: https://www.erc-artistic.eu/ 2. ARTISTIC project publications list: https://www.erc-artistic.eu/scientific-production/publications 3. A.A. Franco et al. , From Battery Manufacturing to Smart Grids: Towards a Metaverse for the Energy Sciences, Batteries & Supercaps , 6 (1) (2023) e202200369.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戚薇发布了新的文献求助10
刚刚
小马甲应助勤劳翰采纳,获得10
刚刚
刚刚
limh完成签到,获得积分10
1秒前
1秒前
phobeeee完成签到 ,获得积分10
1秒前
自然1111发布了新的文献求助10
1秒前
q1356478314应助田济采纳,获得10
2秒前
胡图图完成签到,获得积分10
2秒前
2秒前
吕方完成签到,获得积分10
2秒前
4秒前
L-g-b完成签到,获得积分10
4秒前
杨多多完成签到,获得积分10
4秒前
LLLLLL完成签到,获得积分10
4秒前
www完成签到,获得积分10
5秒前
lenon发布了新的文献求助10
5秒前
1111发布了新的文献求助10
6秒前
7秒前
机智傀斗完成签到,获得积分10
7秒前
善良天抒完成签到 ,获得积分20
7秒前
宇宙中心发布了新的文献求助10
7秒前
小蘑菇应助吕方采纳,获得10
7秒前
夙夙发布了新的文献求助10
8秒前
TP完成签到,获得积分10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得30
9秒前
916应助科研通管家采纳,获得10
9秒前
Bio应助felix采纳,获得50
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Bio应助科研通管家采纳,获得10
9秒前
GEeZiii发布了新的文献求助10
9秒前
916应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650