Establishing Pinhole Deposition Mode of Zn via Scalable Monolayer Graphene Film

材料科学 石墨烯 单层 成核 微晶 图层(电子) 针孔(光学) 纳米技术 沉积(地质) 箔法 纹理(宇宙学) 化学工程 复合材料 光学 冶金 计算机科学 有机化学 化学 图像(数学) 人工智能 生物 沉积物 工程类 物理 古生物学
作者
Yuhan Zou,Yuzhu Wu,Wenze Wei,Changpeng Qiao,Miaoyu Lu,Yiwen Su,Wenyi Guo,Xianzhong Yang,Yuqing Song,Meng Tian,Shi Xue Dou,Zhongfan Liu,Jingyu Sun
出处
期刊:Advanced Materials [Wiley]
被引量:12
标识
DOI:10.1002/adma.202313775
摘要

The uneven texture evolution of Zn during electrodeposition would adversely impact upon the lifespan of aqueous Zn metal batteries. To address this issue, tremendous endeavors are made to induce Zn(002) orientational deposition employing graphene and its derivatives. Nevertheless, the effect of prototype graphene film over Zn deposition behavior has garnered less attention. Here, it is attempted to solve such a puzzle via utilizing transferred high-quality graphene film with controllable layer numbers in a scalable manner on a Zn foil. The multilayer graphene fails to facilitate a Zn epitaxial deposition, whereas the monolayer film with slight breakages steers a unique pinhole deposition mode. In-depth electrochemical measurements and theoretical simulations discover that the transferred graphene film not only acts as an armor to inhibit side reactions but also serves as a buffer layer to homogenize initial Zn nucleation and decrease Zn migration barrier, accordingly enabling a smooth deposition layer with closely stacked polycrystalline domains. As a result, both assembled symmetric and full cells manage to deliver satisfactory electrochemical performances. This study proposes a concept of "pinhole deposition" to dictate Zn electrodeposition and broadens the horizons of graphene-modified Zn anodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发型犀利啊发布了新的文献求助150
1秒前
2秒前
overThat发布了新的文献求助10
2秒前
科研通AI2S应助激昂的君浩采纳,获得10
3秒前
lxz完成签到,获得积分20
4秒前
webmaster完成签到,获得积分10
4秒前
WC241002292完成签到,获得积分10
4秒前
Active发布了新的文献求助10
5秒前
大力翠丝完成签到,获得积分10
5秒前
小巷夜雨完成签到 ,获得积分10
6秒前
可爱的函函应助布丁采纳,获得10
7秒前
情怀应助哈哈采纳,获得10
7秒前
Orange应助张学友的演唱会采纳,获得10
7秒前
10秒前
guojingjing发布了新的文献求助10
13秒前
13秒前
14秒前
Loading完成签到,获得积分10
15秒前
15秒前
Hello应助无忧翻书采纳,获得10
16秒前
23xyke发布了新的文献求助10
20秒前
ssffzb2008完成签到,获得积分10
20秒前
Noldor应助Ashy采纳,获得10
21秒前
爱听歌的冷安完成签到,获得积分10
21秒前
哈哈发布了新的文献求助10
21秒前
发型犀利啊应助guojingjing采纳,获得10
23秒前
24秒前
25秒前
26秒前
29秒前
所所应助科研小笨猪采纳,获得30
30秒前
30秒前
公司VV发布了新的文献求助10
30秒前
每天我都睡得好完成签到 ,获得积分10
30秒前
33秒前
34秒前
39秒前
39秒前
生动雁发布了新的文献求助10
40秒前
汤圆完成签到,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145247
求助须知:如何正确求助?哪些是违规求助? 2796643
关于积分的说明 7820749
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305322
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464