Bubble Growth and Release in Sediments during Water Level Drop: A Growth Model of Isolated Bubbles

气泡 岩土工程 地质学 下降(电信) 土壤科学 机械 工程类 电信 物理
作者
Yongjin Chen,Mengxian Hu,Yixuan Hou,Jin Zhao,Xinzhe Que,Yongchao Zhou,Yiping Zhang
出处
期刊:Journal of Geotechnical and Geoenvironmental Engineering [American Society of Civil Engineers]
卷期号:150 (4)
标识
DOI:10.1061/jggefk.gteng-11736
摘要

Methane and other gases released from soft sediments are among the main sources of greenhouse gases in the atmosphere. In this paper, a growth model for isolated bubbles in the sediments was established based on the theory of linear elastic fracture mechanics. Water level drop experiments were conducted using magnesium lithium philip silicate transparent soils, and the changes in bubble pressure and morphology during water level drop were analyzed. The experimental results show that there is a critical pressure for bubble growth caused by a drop in water level. Bubbles only start to grow by fracturing the overlying sediments when the water level drops to the critical value because the critical bubble pressure is lower than the actual bubble pressure. The strength of soil, depth of the bubble position, longitudinal length of bubble, and amount and rate of water level drop are key factors affecting isolated bubble growth. Bubbles in the soils with higher strength are more difficult to reach the critical state but have a faster growth rate once they do reach it. The depth of bubble position only affects the time reaching the critical state and does not impact the post-growth process. Deeper bubbles are more difficult for initiating growth. For bubbles at the same depth, larger bubbles begin growing earlier. As bubbles become larger, the growth rate of the bubble increases progressively faster. Faster water level drops result in shorter times to reach their critical state and accelerate their growth rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助罗嘉尔采纳,获得10
刚刚
1秒前
nine发布了新的文献求助10
1秒前
大个应助千寻采纳,获得10
1秒前
Yx完成签到,获得积分20
2秒前
险胜应助何嘻嘻采纳,获得10
2秒前
险胜应助何嘻嘻采纳,获得10
2秒前
CLN完成签到,获得积分10
2秒前
oldyang发布了新的文献求助10
2秒前
2秒前
英姑应助自由青柏采纳,获得10
3秒前
song完成签到 ,获得积分10
3秒前
悦耳的柠檬完成签到,获得积分10
3秒前
朱安南发布了新的文献求助10
3秒前
LTDs完成签到,获得积分10
4秒前
5秒前
shunyi完成签到,获得积分20
5秒前
可乐完成签到 ,获得积分10
5秒前
oldyang完成签到,获得积分10
6秒前
lili发布了新的文献求助10
6秒前
科研通AI2S应助Yang_Yuting采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
VaVa应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
bazinga应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
毛豆应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
Blessing完成签到 ,获得积分10
10秒前
CD56应助科研通管家采纳,获得20
10秒前
Ava应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
11秒前
bazinga应助科研通管家采纳,获得10
11秒前
fcf335gj应助科研通管家采纳,获得10
11秒前
Gstar完成签到,获得积分10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272