常染色体显性多囊肾病
囊肿
医学
肾
多囊肾病
肾脏疾病
肾功能
放射科
内科学
作者
Chetana Krishnan,Emma Schmidt,Ezinwanne Onuoha,Michal Mrug,Carlos Cárdenas,Harrison Kim
出处
期刊:Current Medical Imaging Reviews
[Bentham Science]
日期:2024-01-30
卷期号:20
被引量:1
标识
DOI:10.2174/0115734056272767231130110017
摘要
Background:: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder that causes uncontrolled kidney cyst growth, leading to kidney volume enlargement and renal function loss over time. Total kidney volume (TKV) and cyst burdens have been used as prognostic imaging biomarkers for ADPKD. Objective:: This study aimed to evaluate nnUNet for automatic kidney and cyst segmentation in T2-weighted (T2W) MRI images of ADPKD patients. Methods:: 756 kidney images were retrieved from 95 patients in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort (95 patients × 2 kidneys × 4 follow-up scans). The nnUNet model was trained, validated, and tested on 604, 76, and 76 images, respectively. In contrast, all images of each patient were exclusively assigned to either the training, validation, or test sets to minimize evaluation bias. The kidney and cyst regions defined using a semi-automatic method were employed as ground truth. The model performance was assessed using the Dice Similarity Coefficient (DSC), the intersection over union (IoU) score, and the Hausdorff distance (HD). Results:: The test DSC values were 0.96±0.01 (mean±SD) and 0.90±0.05 for kidney and cysts, respectively. Similarly, the IoU scores were 0.91± 0.09 and 0.81±0.06, and the HD values were 12.49±8.71 mm and 12.04±10.41 mm, respectively, for kidney and cyst segmentation. Conclusion:: The nnUNet model is a reliable tool to automatically determine kidney and cyst volumes in T2W MRI images for ADPKD prognosis and therapy monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI