Prior Information and Consumer Search: Evidence from Eye Tracking

眼动 计算机科学 跟踪(教育) 人工智能 广告 经济 心理学 业务 教育学
作者
Raluca Ursu,Tülin Erdem,Qingliang Wang,Qianyun Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2021.00611
摘要

Do consumers search the brands they know more or less frequently than the brands with which they are unfamiliar? In this paper, we attempt to answer this question using data from an experiment with two novel features: (i) survey information on consumers’ prior brand ownership, familiarity with each brand, and prior experience using different product features and (ii) eye-tracking data capturing search behavior at a very granular level. We find that consumers are generally more likely to search and buy brands they own and with which they are familiar, highlighting the importance of accounting for prior information. For this reason, we develop a search model in which both the information obtained during the search process and the information possessed by consumers prior to search are allowed to influence search and purchase decisions. Our model contributes to prior work by modeling search at the brand and attribute levels within a Bayesian learning framework. Using this model, we then quantify the impact of prior information on consumer choices as well as document the estimation bias arising when prior information is absent from the model. Finally, through a series of counterfactuals, we explore the managerial value of prior information data. This paper was accepted by Matt Shum, marketing. Funding: Q. Wang acknowledges financial support from the National Science Foundation of China [Grant 72072145] and the Natural Science Basic Research Program of Shaanxi Province [Grant 2020JQ-226]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.00611 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修仙应助YYYZZX1采纳,获得10
1秒前
wu完成签到,获得积分10
2秒前
顾矜应助虚心的爆米花采纳,获得10
2秒前
2秒前
kk发布了新的文献求助10
2秒前
1988发布了新的文献求助10
4秒前
4秒前
4秒前
CipherSage应助Mercury采纳,获得10
5秒前
orixero应助miao采纳,获得10
8秒前
凝凝完成签到,获得积分10
8秒前
8秒前
teborlee发布了新的文献求助10
9秒前
上官若男应助csy采纳,获得10
9秒前
9秒前
小马甲应助张子扬采纳,获得10
10秒前
ZSHAN发布了新的文献求助10
10秒前
WERTUYU完成签到 ,获得积分10
10秒前
12秒前
风过留痕发布了新的文献求助10
12秒前
14秒前
fifteen发布了新的文献求助10
14秒前
zzzz关注了科研通微信公众号
14秒前
科研通AI2S应助kk采纳,获得10
14秒前
阿皮发布了新的文献求助10
15秒前
科研通AI2S应助dtoakm采纳,获得30
16秒前
17秒前
17秒前
慕容天磊发布了新的文献求助10
18秒前
19秒前
19秒前
maoyu发布了新的文献求助10
19秒前
CodeCraft应助白茶采纳,获得10
20秒前
21秒前
21秒前
21秒前
22秒前
22秒前
传奇3应助Charail采纳,获得30
23秒前
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157866
求助须知:如何正确求助?哪些是违规求助? 2809202
关于积分的说明 7880857
捐赠科研通 2467704
什么是DOI,文献DOI怎么找? 1313664
科研通“疑难数据库(出版商)”最低求助积分说明 630476
版权声明 601943