Multimodal Prognostic Model for Predicting Chronic Coronary Artery Disease in Patients Without Obstructive Sleep Apnea Syndrome

列线图 医学 冠状动脉疾病 内科学 心脏病学 阻塞性睡眠呼吸暂停 置信区间 多导睡眠图 睡眠呼吸暂停 接收机工作特性 呼吸暂停
作者
Yanan Xu,Jun Wang,Zhen Zhou,Yi Yang,Long Tang
出处
期刊:Archives of Medical Research [Elsevier]
卷期号:55 (1): 102926-102926 被引量:5
标识
DOI:10.1016/j.arcmed.2023.102926
摘要

Obstructive sleep apnea syndrome (OSAS), with metabolic disorders as a central feature, is closely correlated with coronary artery disease (CAD). Our goal was to develop a prediction nomogram that integrated multimodal data that could accurately predict the prognosis of patients with chronic coronary disease (CCD). We evaluated 393 patients with CCD with a low-to-intermediate pretest probability of OSAS based on polysomnography. A nomogram was constructed by means of least absolute shrinkage and selection operator (LASSO) and multiple Cox regression analyses to identify independent risk factors for major adverse cardiovascular events (MACEs). Two hundred seventy-seven patients were randomly assigned to the training set, and 116 to the verification set. The constructed nomogram consisted of seven clinical variables: age, previous CAD, current alcohol consumption, neck circumference, apnea-hypopnea index (AHI), and triglyceride-glucose index (TyG). The nomogram showed good discriminatory power, as evidenced by Harrell's C-index values of 0.79 (95% confidence interval [CI] 0.731–0.849) in the training set and 0.78 (95% CI 0.678–0.882) in the verification set. Moreover, a high correlation was observed between the predicted and actual incidence of MACEs in both the training and verification sets. Decision curve analysis demonstrated excellent clinical utility of the nomogram based on net benefit and threshold probabilities. We developed an integrated visualized prognostic nomogram that utilizes multi-modal data, including clinical characteristics, AHI, and TyG index, to predict MACEs in patients with CCD. This approach demonstrated excellent performance, highlighting the potential of combining different data sources to enhance prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弈心完成签到 ,获得积分10
1秒前
科研小BB完成签到,获得积分20
1秒前
roselin26完成签到,获得积分10
1秒前
一战发布了新的文献求助10
2秒前
Cloris完成签到,获得积分10
2秒前
陨落的繁星完成签到,获得积分10
3秒前
活力小鸽子完成签到,获得积分10
3秒前
xuan完成签到,获得积分10
3秒前
研友_Z7Xvl8完成签到,获得积分10
5秒前
流星雨完成签到,获得积分10
6秒前
一颗烂番茄完成签到 ,获得积分10
6秒前
7秒前
喔喔佳佳L发布了新的文献求助10
7秒前
阿来哈哈发布了新的文献求助10
7秒前
二十八完成签到 ,获得积分10
8秒前
cccc发布了新的文献求助10
8秒前
panda到家完成签到,获得积分10
10秒前
一战完成签到,获得积分10
10秒前
lili完成签到,获得积分20
11秒前
专心搞学术完成签到,获得积分20
11秒前
宠辱不惊完成签到,获得积分10
11秒前
2022H发布了新的文献求助10
12秒前
NONO完成签到 ,获得积分10
12秒前
13秒前
jackish完成签到,获得积分10
15秒前
早睡早起身体好完成签到 ,获得积分10
15秒前
山语完成签到 ,获得积分10
15秒前
柠檬酸完成签到,获得积分10
16秒前
16秒前
ark861023发布了新的文献求助10
16秒前
王可乐完成签到 ,获得积分10
17秒前
17秒前
潇湘夜风完成签到,获得积分10
17秒前
tracey完成签到 ,获得积分10
18秒前
科研通AI2S应助派兀派采纳,获得10
18秒前
19秒前
糊涂的雁易完成签到,获得积分10
20秒前
体贴的乐松完成签到,获得积分10
21秒前
搜集达人应助阿来哈哈采纳,获得10
22秒前
雨一直下完成签到,获得积分10
22秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207924
求助须知:如何正确求助?哪些是违规求助? 2857239
关于积分的说明 8109598
捐赠科研通 2522840
什么是DOI,文献DOI怎么找? 1356205
科研通“疑难数据库(出版商)”最低求助积分说明 642291
邀请新用户注册赠送积分活动 613736