Pedestrians’ road-crossing decisions: Comparing different drift-diffusion models

运动学 透视图(图形) 扩散 人行横道 行人 二进制数 数学模型 模拟 统计 计算机科学 生物系统 统计物理学 数学 人工智能 物理 运输工程 工程类 经典力学 热力学 算术 生物
作者
Marc Theisen,Caroline Schießl,Wolfgang Einhäuser,Gustav Markkula
出处
期刊:International journal of human-computer studies [Elsevier]
卷期号:: 103200-103200
标识
DOI:10.1016/j.ijhcs.2023.103200
摘要

The decision of whether to cross a road or wait for a car to pass, humans make frequently and effortlessly. Recently, the application of drift-diffusion models (DDMs) on pedestrians’ decision-making has proven useful in modelling crossing behaviour in pedestrian-vehicle interactions. These models consider binary decision-making as an incremental accumulation of noisy evidence over time until one of two choice thresholds (to cross or not) is reached. One open question is whether the assumption of a kinematics-dependent drift-diffusion process, which was made in previous pedestrian crossing DDMs, is justified, with DDM-parameters varying over time according to the developing traffic situation. It is currently unknown whether kinematics-dependent DDMs provide a better model fit than conventional DDMs, which are fitted per condition. Furthermore, previous DDMs have not considered reaction times for the not-crossing option. We address these issues by a novel experimental design combined with modelling. Experimentally, we use a 2-alternative-forced-choice paradigm, where participants view videos of approaching cars from a pedestrian’s perspective and respond whether they want to cross before the car or to wait until the car has passed. Using these data, we perform thorough model comparison between kinematics-dependent and condition-wise fitted DDMs. Our results demonstrate that condition-wise fitted DDMs can show better model fits than kinematics-dependent DDMs as reflected in the mean-squared-errors. The condition-wise fitted models need considerably more parameters, but in some cases still outperform kinematics-dependent DDMs in measures that penalize the parameter number (e.g., Akaike information criterion). Introducing a starting point bias provides support for the novel hypothesis of rapid early evidence build-up from the initial view of the vehicle distance. The drift rates obtained for the condition-wise fitted models align with the assumptions in the kinematics-dependent models, confirming that pedestrians’ decision processes are kinematics-dependent. However, the partial preference for condition-wise fitted models in the model selection suggests that the correct form of kinematics-dependence has not yet been identified for all DDM-parameters, indicating room for improvement of current pedestrian crossing DDMs. Developing more accurate models of human cognitive processes will likely facilitate autonomous vehicles to understand pedestrians’ intentions as well as to show unambiguous human-like behaviour in future traffic interactions with humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魁梧的盼望完成签到,获得积分10
1秒前
MJ完成签到 ,获得积分10
2秒前
3秒前
123完成签到,获得积分10
4秒前
4秒前
6秒前
长安完成签到,获得积分10
6秒前
九五九发布了新的文献求助10
8秒前
kksk发布了新的文献求助10
9秒前
9秒前
10秒前
KINDMAGIC完成签到,获得积分10
11秒前
打打应助Ruuko采纳,获得10
12秒前
13秒前
lingjuanwu完成签到,获得积分10
13秒前
13秒前
廖qingliang发布了新的文献求助10
13秒前
14秒前
15秒前
biozj发布了新的文献求助10
16秒前
winterm完成签到,获得积分20
16秒前
墨竹滴翠完成签到,获得积分10
16秒前
17秒前
鹏程万里完成签到,获得积分10
17秒前
甜甜寄凡发布了新的文献求助150
17秒前
cc发布了新的文献求助10
18秒前
12345完成签到 ,获得积分10
18秒前
兴奋的小虾米完成签到 ,获得积分10
18秒前
20秒前
20秒前
21秒前
21秒前
柚子茶茶茶完成签到,获得积分20
23秒前
张先森发布了新的文献求助50
25秒前
伶俐雨双发布了新的文献求助10
25秒前
evelynnni发布了新的文献求助10
25秒前
26秒前
26秒前
tan完成签到 ,获得积分10
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133348
求助须知:如何正确求助?哪些是违规求助? 2784511
关于积分的说明 7767015
捐赠科研通 2439679
什么是DOI,文献DOI怎么找? 1296929
科研通“疑难数据库(出版商)”最低求助积分说明 624809
版权声明 600771