Pedestrians’ road-crossing decisions: Comparing different drift-diffusion models

运动学 透视图(图形) 扩散 人行横道 行人 二进制数 数学模型 模拟 统计 计算机科学 生物系统 统计物理学 数学 人工智能 物理 运输工程 工程类 经典力学 热力学 算术 生物
作者
Marc Theisen,Caroline Schießl,Wolfgang Einhäuser,Gustav Markkula
出处
期刊:International journal of human-computer studies [Elsevier]
卷期号:: 103200-103200
标识
DOI:10.1016/j.ijhcs.2023.103200
摘要

The decision of whether to cross a road or wait for a car to pass, humans make frequently and effortlessly. Recently, the application of drift-diffusion models (DDMs) on pedestrians’ decision-making has proven useful in modelling crossing behaviour in pedestrian-vehicle interactions. These models consider binary decision-making as an incremental accumulation of noisy evidence over time until one of two choice thresholds (to cross or not) is reached. One open question is whether the assumption of a kinematics-dependent drift-diffusion process, which was made in previous pedestrian crossing DDMs, is justified, with DDM-parameters varying over time according to the developing traffic situation. It is currently unknown whether kinematics-dependent DDMs provide a better model fit than conventional DDMs, which are fitted per condition. Furthermore, previous DDMs have not considered reaction times for the not-crossing option. We address these issues by a novel experimental design combined with modelling. Experimentally, we use a 2-alternative-forced-choice paradigm, where participants view videos of approaching cars from a pedestrian’s perspective and respond whether they want to cross before the car or to wait until the car has passed. Using these data, we perform thorough model comparison between kinematics-dependent and condition-wise fitted DDMs. Our results demonstrate that condition-wise fitted DDMs can show better model fits than kinematics-dependent DDMs as reflected in the mean-squared-errors. The condition-wise fitted models need considerably more parameters, but in some cases still outperform kinematics-dependent DDMs in measures that penalize the parameter number (e.g., Akaike information criterion). Introducing a starting point bias provides support for the novel hypothesis of rapid early evidence build-up from the initial view of the vehicle distance. The drift rates obtained for the condition-wise fitted models align with the assumptions in the kinematics-dependent models, confirming that pedestrians’ decision processes are kinematics-dependent. However, the partial preference for condition-wise fitted models in the model selection suggests that the correct form of kinematics-dependence has not yet been identified for all DDM-parameters, indicating room for improvement of current pedestrian crossing DDMs. Developing more accurate models of human cognitive processes will likely facilitate autonomous vehicles to understand pedestrians’ intentions as well as to show unambiguous human-like behaviour in future traffic interactions with humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
rudjs发布了新的文献求助10
1秒前
4秒前
Ava应助何糖采纳,获得10
4秒前
桐桐应助美丽的芷烟采纳,获得10
4秒前
野子完成签到,获得积分10
5秒前
情怀应助小D采纳,获得30
6秒前
yuan发布了新的文献求助10
6秒前
berry发布了新的文献求助10
7秒前
7秒前
淡淡采白发布了新的文献求助10
8秒前
思源应助勤恳慕蕊采纳,获得10
8秒前
知犯何逆完成签到 ,获得积分10
9秒前
啊哈完成签到,获得积分10
9秒前
10秒前
10秒前
Draven完成签到 ,获得积分10
10秒前
tmpstlml发布了新的文献求助10
11秒前
张红梨完成签到,获得积分10
11秒前
迷迷完成签到,获得积分20
12秒前
12秒前
科研通AI2S应助chen采纳,获得10
13秒前
穿山甲坐飞机完成签到 ,获得积分10
13秒前
14秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
14秒前
科研通AI5应助经年采纳,获得10
14秒前
14秒前
勤劳晓亦应助木头人采纳,获得10
15秒前
科研通AI5应助想瘦的海豹采纳,获得10
15秒前
16秒前
科研通AI5应助adazbd采纳,获得10
16秒前
bkagyin应助皮皮桂采纳,获得10
16秒前
17秒前
重要的哈密瓜完成签到 ,获得积分10
17秒前
会飞的云完成签到 ,获得积分10
18秒前
18秒前
毕不了业的凡阿哥完成签到,获得积分10
18秒前
野子发布了新的文献求助10
18秒前
berry完成签到,获得积分10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808