Pedestrians’ road-crossing decisions: Comparing different drift-diffusion models

运动学 透视图(图形) 扩散 人行横道 行人 二进制数 数学模型 模拟 统计 计算机科学 生物系统 统计物理学 数学 人工智能 物理 运输工程 工程类 经典力学 热力学 算术 生物
作者
Marc Theisen,Caroline Schießl,Wolfgang Einhäuser,Gustav Markkula
出处
期刊:International journal of human-computer studies [Elsevier BV]
卷期号:: 103200-103200
标识
DOI:10.1016/j.ijhcs.2023.103200
摘要

The decision of whether to cross a road or wait for a car to pass, humans make frequently and effortlessly. Recently, the application of drift-diffusion models (DDMs) on pedestrians’ decision-making has proven useful in modelling crossing behaviour in pedestrian-vehicle interactions. These models consider binary decision-making as an incremental accumulation of noisy evidence over time until one of two choice thresholds (to cross or not) is reached. One open question is whether the assumption of a kinematics-dependent drift-diffusion process, which was made in previous pedestrian crossing DDMs, is justified, with DDM-parameters varying over time according to the developing traffic situation. It is currently unknown whether kinematics-dependent DDMs provide a better model fit than conventional DDMs, which are fitted per condition. Furthermore, previous DDMs have not considered reaction times for the not-crossing option. We address these issues by a novel experimental design combined with modelling. Experimentally, we use a 2-alternative-forced-choice paradigm, where participants view videos of approaching cars from a pedestrian’s perspective and respond whether they want to cross before the car or to wait until the car has passed. Using these data, we perform thorough model comparison between kinematics-dependent and condition-wise fitted DDMs. Our results demonstrate that condition-wise fitted DDMs can show better model fits than kinematics-dependent DDMs as reflected in the mean-squared-errors. The condition-wise fitted models need considerably more parameters, but in some cases still outperform kinematics-dependent DDMs in measures that penalize the parameter number (e.g., Akaike information criterion). Introducing a starting point bias provides support for the novel hypothesis of rapid early evidence build-up from the initial view of the vehicle distance. The drift rates obtained for the condition-wise fitted models align with the assumptions in the kinematics-dependent models, confirming that pedestrians’ decision processes are kinematics-dependent. However, the partial preference for condition-wise fitted models in the model selection suggests that the correct form of kinematics-dependence has not yet been identified for all DDM-parameters, indicating room for improvement of current pedestrian crossing DDMs. Developing more accurate models of human cognitive processes will likely facilitate autonomous vehicles to understand pedestrians’ intentions as well as to show unambiguous human-like behaviour in future traffic interactions with humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真乐安关注了科研通微信公众号
3秒前
4秒前
下雨的颜色完成签到,获得积分10
7秒前
7秒前
lcc完成签到,获得积分10
7秒前
hayek完成签到,获得积分10
9秒前
凌风子完成签到,获得积分10
10秒前
失眠雨双完成签到,获得积分10
10秒前
超级如风发布了新的文献求助10
10秒前
彭于晏应助cozy111采纳,获得10
11秒前
11秒前
天真苑睐完成签到,获得积分10
12秒前
huohuo发布了新的文献求助10
14秒前
CMD完成签到 ,获得积分10
17秒前
HanJinyu发布了新的文献求助30
17秒前
sun完成签到,获得积分10
17秒前
沉默的二娘完成签到,获得积分10
17秒前
18秒前
18秒前
lwj完成签到 ,获得积分20
19秒前
小徐完成签到,获得积分10
19秒前
YOLO完成签到 ,获得积分10
19秒前
慕青应助charint采纳,获得10
19秒前
19秒前
EASA完成签到,获得积分10
20秒前
LIU发布了新的文献求助10
20秒前
等待的寒松完成签到,获得积分10
21秒前
21秒前
21秒前
成江完成签到,获得积分10
22秒前
刘强发布了新的文献求助10
23秒前
思源应助欢喜的怜菡采纳,获得10
23秒前
GingerF应助超级如风采纳,获得100
23秒前
bkagyin应助超级如风采纳,获得10
23秒前
在水一方应助Annie采纳,获得10
24秒前
24秒前
25秒前
香蕉觅云应助午盏采纳,获得30
25秒前
25秒前
yk完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288966
求助须知:如何正确求助?哪些是违规求助? 4440796
关于积分的说明 13825631
捐赠科研通 4323077
什么是DOI,文献DOI怎么找? 2372945
邀请新用户注册赠送积分活动 1368399
关于科研通互助平台的介绍 1332283