A Survey on Joint-Operation Application for Unmanned Swarm Formations Under a Complex Confrontation Environment

接头(建筑物) 群体行为 地质学 计算机科学 人工智能 海洋工程 工程类 土木工程
作者
Jialong Zhang,Kun Han,Pu Zhang,Zhongxi Hou,Lei Ye
出处
期刊:Chinese Journal of Systems Engineering and Electronics [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 1432-1446 被引量:5
标识
DOI:10.23919/jsee.2023.000162
摘要

With the rapid development of informatization, autonomy and intelligence, unmanned swarm formation intelligent operations will become the main combat mode of future wars. Typical unmanned swarm formations such as ground-based directed energy weapon formations, space-based kinetic energy weapon formations, and sea-based carrier-based formations have become the trump card for winning future wars. In a complex confrontation environment, these sophisticated weapon formation systems can precisely strike mobile threat group targets, making them extreme deterrents in joint combat applications. Based on this, first, this paper provides a comprehensive summary of the outstanding advantages, strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare. Second, a detailed analysis of the technological breakthroughs in four key areas, situational awareness, heterogeneous coordination, mixed combat, and intelligent assessment of typical unmanned aerial vehicle (UAV) swarms in joint warfare, is presented. An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control. Then, an in-depth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control. Finally, the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助刻苦的晓蕾采纳,获得10
1秒前
2秒前
流浪完成签到,获得积分10
3秒前
3W完成签到,获得积分10
4秒前
5秒前
张雨露发布了新的文献求助10
5秒前
迷路安南完成签到,获得积分10
6秒前
su完成签到,获得积分10
6秒前
cgavskobe完成签到,获得积分10
6秒前
7秒前
任博文发布了新的文献求助10
7秒前
完美橘子完成签到,获得积分10
7秒前
7秒前
好耶发布了新的文献求助10
10秒前
Dr_Zhang发布了新的文献求助10
10秒前
tufei发布了新的文献求助10
11秒前
lorenzo5zz发布了新的文献求助20
11秒前
MR_Z发布了新的文献求助20
12秒前
SY完成签到,获得积分10
12秒前
万能图书馆应助linguobin采纳,获得10
12秒前
找文献啊找文献应助离歌采纳,获得30
12秒前
JamesPei应助zhangfan采纳,获得10
13秒前
猪猪猪完成签到,获得积分10
14秒前
毛豆应助张雨露采纳,获得10
14秒前
NexusExplorer应助张雨露采纳,获得10
14秒前
16秒前
afterjourney完成签到,获得积分10
17秒前
orixero应助好耶采纳,获得10
17秒前
云中漫步完成签到,获得积分10
18秒前
小玉完成签到,获得积分20
18秒前
傲娇的冷亦完成签到,获得积分10
18秒前
霍嘉文发布了新的文献求助10
18秒前
搜集达人应助wasiwan采纳,获得10
18秒前
852应助周一斩采纳,获得10
19秒前
阿潇完成签到,获得积分10
19秒前
十二发布了新的文献求助20
19秒前
毛豆应助lyz666采纳,获得10
21秒前
华仔应助zzh0409km采纳,获得10
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234