太赫兹辐射
光学
材料科学
宽带
栅栏
电介质
消色差透镜
光电子学
带宽(计算)
物理
电信
计算机科学
作者
Shi‐Tong Xu,Huifang Zhang,Longqing Cong,Zhanqiang Xue,Dan Lu,Ying‐Hua Wang,Xiaofei Hu,Lanju Liang,Yunyun Ji,Fei Fan,Shengjiang Chang
标识
DOI:10.1002/adom.202302696
摘要
Abstract Manipulating terahertz (THz) polarization in an efficient and broadband manner is of great significance to facilitating THz applications, including communications, imaging, defense, and homeland security. In this work, a dispersion compensation scheme is proposed for high‐efficiency and ultra‐broadband THz polarization manipulation using an anisotropic dielectric‐metal hybrid metadevice. The operating bandwidth is broadened by dispersion compensation, where the dielectric grating provides an artificial birefringence with a phase dispersion of positive slope and the metallic grating provides a phase dispersion of negative slope. Experimental results show that the device achieves two ultra‐broadband dispersion compensation, corresponding to the achromatic quarter‐wave plate in the lower frequency band (QWP: 0.5–2.0 THz, PCR >0.95) and the achromatic half‐wave plate in the higher frequency band (HWP: 1.0–2.1 THz, PCR >0.9), respectively. Theoretically, the bandwidth of QWP can be further improved to 2.6 THz by optimizing the grating dispersion, which brings huge application space to cover most of the THz radiation. This hybrid metadevice configuration offers a versatile platform for engineering electromagnetic waves, and the strategy of phase compensation can be generalized to extend the bandwidth of the metadevice in imaging and communications.
科研通智能强力驱动
Strongly Powered by AbleSci AI