Atomically Dispersed Zn/Co–N–C as ORR Electrocatalysts for Alkaline Fuel Cells

化学 催化作用 部分 电化学 燃料电池 金属 可逆氢电极 组合化学 化学工程 无机化学 纳米技术 电极 工作电极 立体化学 物理化学 有机化学 材料科学 工程类
作者
Weixuan Xu,Rui Zeng,Michael Rebarchik,Alvaro Posada-Borbón,Huiqi Li,Christopher J. Pollock,Manos Mavrikakis,Héctor D. Abruña
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (4): 2593-2603 被引量:13
标识
DOI:10.1021/jacs.3c11355
摘要

Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal–organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co–N–C), consisting of Co–N4 and Zn–N4 local structures. These catalysts exhibited superior ORR activity with a half-wave potential (E1/2) of 0.938 V versus RHE (reversible hydrogen electrode) and robust stability (ΔE1/2 = −8.5 mV) after 50k electrochemical cycles. Moreover, this remarkable performance was validated under realistic fuel cell working conditions, achieving a record-high peak power density of ∼1 W cm–2 among the reported SACs for alkaline fuel cells. Operando X-ray absorption spectroscopy was conducted to identify the active sites and reveal catalytic mechanistic insights. The results indicated that the Co atom in the Co–N4 structure was the main catalytically active center, where one axial oxygenated species binds to form an Oads–Co–N4 moiety during the ORR. In addition, theoretical studies, based on a potential-dependent microkinetic model and core-level shift calculations, showed good agreement with the experimental results and provided insights into the bonding of oxygen species on Co–N4 centers during the ORR. This work provides a comprehensive mechanistic understanding of the active sites in the Zn/Co–N–C catalysts and will pave the way for the future design and advancement of high-performance single-site electrocatalysts for fuel cells and other energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扶苏发布了新的文献求助10
1秒前
1秒前
现代雪晴完成签到,获得积分10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
加油干发布了新的文献求助10
2秒前
2秒前
jiaozhiping发布了新的文献求助10
3秒前
喜悦立诚完成签到,获得积分20
3秒前
3秒前
汪小杰发布了新的文献求助10
3秒前
蒋时晏应助鱼0306采纳,获得20
4秒前
瘦瘦的中道完成签到 ,获得积分10
4秒前
简洁应助pxx采纳,获得10
4秒前
5秒前
黎长江完成签到,获得积分10
6秒前
albertxin应助科研通管家采纳,获得10
6秒前
77777发布了新的文献求助10
6秒前
溴氧铋发布了新的文献求助10
8秒前
9秒前
9秒前
懒得起名完成签到,获得积分10
10秒前
领导范儿应助叶七采纳,获得10
10秒前
huang发布了新的文献求助10
11秒前
酷波er应助科研通管家采纳,获得10
12秒前
JianYugen发布了新的文献求助10
12秒前
MengMeng完成签到,获得积分10
12秒前
上官若男应助危机的盼晴采纳,获得10
12秒前
13秒前
qunli完成签到,获得积分10
13秒前
Yolanda发布了新的文献求助20
13秒前
清沐发布了新的文献求助10
13秒前
森林木完成签到,获得积分10
14秒前
14秒前
赫幼蓉完成签到 ,获得积分10
14秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
heew发布了新的文献求助10
15秒前
Mengjie完成签到,获得积分10
16秒前
涵涵漂不漂亮完成签到,获得积分10
17秒前
大圣发布了新的文献求助10
17秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2996313
求助须知:如何正确求助?哪些是违规求助? 2656692
关于积分的说明 7190248
捐赠科研通 2292267
什么是DOI,文献DOI怎么找? 1215095
科研通“疑难数据库(出版商)”最低求助积分说明 593071
版权声明 592795