小胶质细胞
甘油醛3-磷酸脱氢酶
糖酵解
生物
细胞生物学
代谢途径
炎症
生物化学
脱氢酶
酶
免疫学
作者
Shangchen Yang,Ziqi Yuan,Yufei Zhu,Chensi Liang,Zhenlei Chen,Jie Zhang,Lige Leng
标识
DOI:10.1016/j.bbi.2024.01.009
摘要
A "switch" in the metabolic pattern of microglia is considered to be required to meet the metabolic demands of cell survival and functions. However, how metabolic switches regulate microglial function remains controversial. We found here that exposure to amyloid-β triggers microglial inflammation accompanied by increasing GAPDH levels. The increase of GAPDH, a glycolysis enzyme, leads to the reduced release of interferon-γ (IFN-γ) from inflammatory microglia. Such alternation is translational and is regulated by the binding of glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through influencing IFN-γ expression, regulates microglia functions, including phagocytosis and cytokine production. Phosphoglycerate dehydrogenase (PHGDH), screened from different state microglia by metabolomics combined with METARECON analysis, is a metabolic enzyme adjacent downstream of GAPDH and synthesizes serine on the collateral pathway derived from glycolysis. Polarization of microglial with PHGDH as a metabolic checkpoint can be bidirectionally regulated by adding IL-4 or giving PHGDH inhibitors. Therefore, regulation of metabolic enzymes not only reprograms metabolic patterns, but also manipulates microglia functions. Further study should be performed to explore the mechanism of metabolic checkpoints in human microglia or more in vivo animal experiments, and may expand to the effects of various metabolic substrates or enzyme, such as lipids and amino acids, on the functions of microglia.
科研通智能强力驱动
Strongly Powered by AbleSci AI