已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LRENet: a location-related enhancement network for liver lesions in CT images

图像增强 人工智能 计算机科学 放射科 核医学 计算机视觉 医学 图像(数学)
作者
Shuli Guo,Hui Wang,Sos С. Agaian,Lina Han,Xiaowei Song
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (3): 035019-035019 被引量:2
标识
DOI:10.1088/1361-6560/ad1d6b
摘要

Abstract Objective . Liver cancer is a major global health problem expected to increase by more than 55% by 2040. Accurate segmentation of liver tumors from computed tomography (CT) images is essential for diagnosis and treatment planning. However, this task is challenging due to the variations in liver size, the low contrast between tumor and normal tissue, and the noise in the images. Approach. In this study, we propose a novel method called location-related enhancement network (LRENet) which can enhance the contrast of liver lesions in CT images and facilitate their segmentation. LRENet consists of two steps: (1) locating the lesions and the surrounding tissues using a morphological approach and (2) enhancing the lesions and smoothing the other regions using a new loss function. Main results. We evaluated LRENet on two public datasets (LiTS and 3Dircadb01) and one dataset collected from a collaborative hospital (Liver cancer dateset), and compared it with state-of-the-art methods regarding several metrics. The results of the experiments showed that our proposed method outperformed the compared methods on three datasets in several metrics. We also trained the Swin-Transformer network on the enhanced datasets and showed that our method could improve the segmentation performance of both liver and lesions. Significance. Our method has potential applications in clinical diagnosis and treatment planning, as it can provide more reliable and informative CT images of liver tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
enjoy完成签到,获得积分10
1秒前
LS完成签到,获得积分10
2秒前
彭于晏应助丽君采纳,获得10
3秒前
3秒前
4秒前
Zack完成签到,获得积分10
4秒前
桐桐应助cc采纳,获得10
4秒前
舟夏完成签到 ,获得积分10
4秒前
4秒前
Hello应助年轻智宸采纳,获得10
6秒前
小朱同学完成签到,获得积分10
6秒前
Sausage发布了新的文献求助10
6秒前
9秒前
9秒前
TT完成签到,获得积分10
10秒前
10秒前
丽君完成签到,获得积分10
11秒前
12秒前
LS发布了新的文献求助10
12秒前
YX发布了新的文献求助10
13秒前
fox199753206发布了新的文献求助10
14秒前
17秒前
17秒前
张晓念完成签到,获得积分10
19秒前
伶俐一曲完成签到 ,获得积分10
21秒前
23秒前
扎菜发布了新的文献求助10
23秒前
张晓念发布了新的文献求助10
27秒前
enjoy关注了科研通微信公众号
29秒前
30秒前
共享精神应助aa1718采纳,获得10
31秒前
喈喈青鸟完成签到,获得积分10
32秒前
34秒前
38秒前
武狼帝完成签到 ,获得积分10
40秒前
41秒前
41秒前
zkg完成签到,获得积分20
43秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330247
求助须知:如何正确求助?哪些是违规求助? 2959843
关于积分的说明 8597367
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444234
科研通“疑难数据库(出版商)”最低求助积分说明 669078
邀请新用户注册赠送积分活动 656628