A maps-to-maps approach for simulating urban land expansion based on convolutional long short-term memory neural networks

卷积神经网络 城市扩张 期限(时间) 计算机科学 地图学 短时记忆 人工神经网络 地理 人工智能 土地利用 循环神经网络 工程类 量子力学 物理 土木工程
作者
Zihao Zhou,Yimin Chen,Xiaoping Liu,Xinchang Zhang,Honghui Zhang
出处
期刊:International journal of geographical information systems [Informa]
卷期号:38 (3): 503-526 被引量:9
标识
DOI:10.1080/13658816.2023.2298296
摘要

Cellular automata (CA) have been prevalently used for the simulation of urban land change. However, how to effectively learn the spatial-temporal dynamics of urban development from time-series data remain an important challenge for CA-based models. To address this issue, we propose a new model for the simulation of urban development based on convolutional long short-term memory (ConvLSTM) neural networks. The core of the proposed model is a sequence of vanilla ConvLSTM cells integrated with the modules of channel attention and contextual embedding. Compared with conventional CA-based models, the proposed ConvLSTM model is more advanced in that it can better leverage the open access annual urban land maps to capture simultaneously the spatial structure and the temporal dependency of historical urban development, and further predict multiple maps of annual development for subsequent years (i.e., Maps-to-Maps). The performance of the ConvLSTM model is evaluated through the case studies in China’s three mega-urban regions, and ConvLSTM outperforms other state-of-the-art deep learning architectures at both the pixel level and the coarser grid level. The results also suggest the satisfactory transferability of ConvLSTM in that the model trained in one mega-urban region can be successfully re-used in others without fine tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助20
1秒前
fxsg发布了新的文献求助10
1秒前
1秒前
谦让的映容完成签到,获得积分10
1秒前
Luis完成签到,获得积分10
2秒前
斯文败类应助YHL采纳,获得10
3秒前
4秒前
5秒前
从容道罡完成签到,获得积分10
5秒前
Luis发布了新的文献求助10
5秒前
傲娇衬衫发布了新的文献求助10
7秒前
Lucas应助英勇初曼采纳,获得10
7秒前
杨立胜发布了新的文献求助10
8秒前
九天完成签到 ,获得积分0
9秒前
houbin发布了新的文献求助10
10秒前
CodeCraft应助wang采纳,获得10
10秒前
14秒前
NexusExplorer应助yanier采纳,获得10
15秒前
傲娇衬衫完成签到,获得积分10
15秒前
16秒前
yiming完成签到 ,获得积分10
17秒前
复杂的幻灵完成签到,获得积分10
19秒前
Luffy发布了新的文献求助10
19秒前
棒棒糖完成签到,获得积分10
19秒前
小冰完成签到,获得积分10
21秒前
23秒前
英勇初曼发布了新的文献求助10
23秒前
鱼儿游完成签到 ,获得积分10
24秒前
27秒前
充电宝应助小桔青山采纳,获得10
27秒前
汪洋浮萍一道开完成签到,获得积分20
27秒前
虚心的芝麻完成签到 ,获得积分10
28秒前
30秒前
沈清酌应助科研通管家采纳,获得10
32秒前
yanier发布了新的文献求助10
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
王伟轩应助科研通管家采纳,获得10
32秒前
32秒前
ding应助科研通管家采纳,获得10
32秒前
醉熏的荣轩完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877825
求助须知:如何正确求助?哪些是违规求助? 6546241
关于积分的说明 15682407
捐赠科研通 4996547
什么是DOI,文献DOI怎么找? 2692754
邀请新用户注册赠送积分活动 1634753
关于科研通互助平台的介绍 1592428