亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wo完成签到 ,获得积分10
1秒前
2秒前
深耕发布了新的文献求助10
9秒前
17秒前
深耕完成签到,获得积分10
21秒前
当时只道是寻常完成签到,获得积分10
30秒前
puyehwu完成签到,获得积分10
35秒前
Xuying3900完成签到,获得积分10
51秒前
1分钟前
落后从阳完成签到 ,获得积分10
1分钟前
dcy发布了新的文献求助10
1分钟前
1分钟前
dcy完成签到,获得积分10
1分钟前
daishuheng完成签到 ,获得积分10
1分钟前
魏白晴完成签到,获得积分10
1分钟前
1分钟前
思源应助派大星采纳,获得10
1分钟前
英俊的铭应助深情的阿宇采纳,获得10
1分钟前
忧郁芝发布了新的文献求助10
1分钟前
杰哥完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
开朗满天完成签到 ,获得积分10
1分钟前
眰恦发布了新的文献求助10
2分钟前
2分钟前
义气的从彤给义气的从彤的求助进行了留言
2分钟前
tursun完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助欧皇采纳,获得10
2分钟前
2分钟前
城南烤地瓜完成签到 ,获得积分10
2分钟前
cacatu发布了新的文献求助10
2分钟前
duang发布了新的文献求助10
2分钟前
2分钟前
ding应助萤火虫采纳,获得10
3分钟前
3分钟前
3分钟前
Chloe发布了新的文献求助10
3分钟前
大个应助科研通管家采纳,获得30
3分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164729
求助须知:如何正确求助?哪些是违规求助? 2815815
关于积分的说明 7910400
捐赠科研通 2475434
什么是DOI,文献DOI怎么找? 1318150
科研通“疑难数据库(出版商)”最低求助积分说明 632011
版权声明 602282