清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:37
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的丹雪完成签到,获得积分10
14秒前
上官若男应助ykssss采纳,获得10
41秒前
51秒前
科研通AI6.1应助悠悠采纳,获得10
1分钟前
李燕伟完成签到 ,获得积分10
1分钟前
1分钟前
悠悠发布了新的文献求助10
1分钟前
英姑应助Ellen采纳,获得30
1分钟前
1分钟前
1分钟前
ykssss发布了新的文献求助10
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
2分钟前
2分钟前
内向的绿应助读书的时候采纳,获得10
2分钟前
3分钟前
hhuajw应助读书的时候采纳,获得10
3分钟前
3分钟前
Ellen发布了新的文献求助30
3分钟前
顾矜应助读书的时候采纳,获得10
4分钟前
潜行者完成签到 ,获得积分10
4分钟前
Alger完成签到,获得积分10
4分钟前
科研通AI6.1应助悠悠采纳,获得10
4分钟前
qq完成签到 ,获得积分10
4分钟前
5分钟前
悠悠完成签到,获得积分20
5分钟前
5分钟前
悠悠发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高挑的白旋风完成签到,获得积分10
5分钟前
6分钟前
阿俊完成签到 ,获得积分10
6分钟前
lydiaabc完成签到,获得积分10
6分钟前
6分钟前
7分钟前
輕瘋发布了新的文献求助10
7分钟前
Ava应助读书的时候采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732540
求助须知:如何正确求助?哪些是违规求助? 5340403
关于积分的说明 15322326
捐赠科研通 4878049
什么是DOI,文献DOI怎么找? 2620881
邀请新用户注册赠送积分活动 1570054
关于科研通互助平台的介绍 1526759