亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:37
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助yolo采纳,获得10
刚刚
oo发布了新的文献求助10
4秒前
6秒前
6秒前
gt完成签到 ,获得积分10
7秒前
Hcc完成签到 ,获得积分10
10秒前
YingxueRen完成签到,获得积分10
11秒前
shareef发布了新的文献求助10
11秒前
重要青柏发布了新的文献求助10
16秒前
24秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
29秒前
auraro完成签到 ,获得积分10
30秒前
G1完成签到,获得积分10
31秒前
烟花应助Re采纳,获得10
33秒前
Ava应助Re采纳,获得10
33秒前
G1发布了新的文献求助10
34秒前
大方小蘑菇完成签到,获得积分10
37秒前
科目三应助默默采纳,获得10
39秒前
寂川发布了新的文献求助10
43秒前
48秒前
包容新蕾完成签到 ,获得积分10
52秒前
贺临完成签到 ,获得积分10
52秒前
默默发布了新的文献求助10
53秒前
58秒前
陈征完成签到,获得积分10
1分钟前
科研通AI6.1应助重要青柏采纳,获得10
1分钟前
陈征发布了新的文献求助10
1分钟前
1分钟前
芷兰丁香完成签到,获得积分10
1分钟前
千寻完成签到,获得积分0
1分钟前
yolo发布了新的文献求助10
1分钟前
1分钟前
光合作用完成签到,获得积分10
1分钟前
NexusExplorer应助陈征采纳,获得10
1分钟前
ding应助LucyMartinez采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739102
求助须知:如何正确求助?哪些是违规求助? 5383779
关于积分的说明 15339426
捐赠科研通 4881827
什么是DOI,文献DOI怎么找? 2623950
邀请新用户注册赠送积分活动 1572640
关于科研通互助平台的介绍 1529390