Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:37
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fzzf发布了新的文献求助10
1秒前
熬夜猫完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
黄大仙完成签到,获得积分10
4秒前
丁莞完成签到,获得积分10
4秒前
落月铭完成签到,获得积分20
4秒前
5秒前
花海完成签到,获得积分20
5秒前
八八小葵应助Stranger采纳,获得10
6秒前
6秒前
香蕉觅云应助美丽妍采纳,获得10
6秒前
Yinp发布了新的文献求助10
7秒前
onetec发布了新的文献求助10
8秒前
让我多睡会吧完成签到,获得积分10
10秒前
含蓄思远发布了新的文献求助10
10秒前
无名完成签到,获得积分10
11秒前
13秒前
13秒前
祝邴发布了新的文献求助10
14秒前
李爱国应助宓函采纳,获得10
16秒前
利奈唑胺完成签到,获得积分10
18秒前
安静店员完成签到,获得积分10
18秒前
一一发布了新的文献求助10
19秒前
Yinp完成签到,获得积分20
19秒前
执玉完成签到,获得积分10
21秒前
笑笑发布了新的文献求助20
21秒前
21秒前
量子星尘发布了新的文献求助10
24秒前
lachine发布了新的文献求助10
24秒前
端庄的访枫完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
沉静自中应助hkh采纳,获得10
29秒前
浪子应助hkh采纳,获得10
29秒前
浪子应助hkh采纳,获得10
29秒前
smottom应助hkh采纳,获得10
29秒前
小薛爱科研给冉遗的求助进行了留言
30秒前
sanqiu发布了新的文献求助20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679544
求助须知:如何正确求助?哪些是违规求助? 4991293
关于积分的说明 15169832
捐赠科研通 4839336
什么是DOI,文献DOI怎么找? 2593253
邀请新用户注册赠送积分活动 1546377
关于科研通互助平台的介绍 1504488