Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:37
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪元彤完成签到,获得积分10
3秒前
张志恒发布了新的文献求助10
3秒前
简历发布了新的文献求助10
5秒前
可爱的函函应助shinn采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
ding应助张志恒采纳,获得10
9秒前
上官若男应助huihui2121采纳,获得10
10秒前
11秒前
12秒前
13秒前
小蘑菇应助沙滩的收印采纳,获得10
13秒前
打打应助小米采纳,获得10
14秒前
15秒前
15秒前
彭于晏应助喵喵苗采纳,获得10
15秒前
darling发布了新的文献求助10
15秒前
谦让的牛排完成签到 ,获得积分10
17秒前
深情安青应助ZZZ采纳,获得10
17秒前
heguangjie发布了新的文献求助10
18秒前
shinn发布了新的文献求助10
18秒前
英姑应助学习采纳,获得10
19秒前
pear发布了新的文献求助10
20秒前
20秒前
xu1227发布了新的文献求助10
21秒前
Orange应助唠叨的以柳采纳,获得10
21秒前
samchen完成签到,获得积分10
22秒前
领导范儿应助迟迟采纳,获得10
22秒前
123456完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助30
23秒前
苗条的嘉熙完成签到,获得积分10
23秒前
科研通AI2S应助坦率铅笔采纳,获得10
24秒前
lzn完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助20
25秒前
ahaha发布了新的文献求助10
25秒前
26秒前
1111发布了新的文献求助10
26秒前
清风荷影完成签到 ,获得积分10
29秒前
29秒前
丘比特应助zxh采纳,获得10
30秒前
xiaoma完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761193
求助须知:如何正确求助?哪些是违规求助? 5528487
关于积分的说明 15399103
捐赠科研通 4897757
什么是DOI,文献DOI怎么找? 2634428
邀请新用户注册赠送积分活动 1582520
关于科研通互助平台的介绍 1537821