Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:37
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵佳怡完成签到,获得积分10
刚刚
搜集达人应助ck567采纳,获得10
刚刚
彩虹发布了新的文献求助10
1秒前
俊秀的寻菱完成签到,获得积分10
1秒前
无花果应助王多肉采纳,获得10
2秒前
慕青应助我好像是小何采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助20
2秒前
2秒前
夜绒枭完成签到 ,获得积分10
3秒前
难过的丹烟完成签到,获得积分10
4秒前
CodeCraft应助罗克采纳,获得10
4秒前
两句话给两句话的求助进行了留言
4秒前
5秒前
懒回顾完成签到,获得积分10
5秒前
6秒前
7秒前
Orange应助坦率的寒云采纳,获得10
7秒前
复杂黑夜发布了新的文献求助10
7秒前
怕孤单的灵竹完成签到,获得积分10
8秒前
NexusExplorer应助ZC采纳,获得10
9秒前
zj发布了新的文献求助10
9秒前
why发布了新的文献求助10
10秒前
科研通AI6应助陈陈陈采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
gujianhua发布了新的文献求助10
12秒前
归尘发布了新的文献求助50
12秒前
Meow发布了新的文献求助10
12秒前
豆沙包没有豆完成签到,获得积分10
13秒前
科研通AI6应助江阳宏采纳,获得10
13秒前
科研通AI6应助江阳宏采纳,获得10
13秒前
科研通AI6应助江阳宏采纳,获得10
13秒前
yu完成签到,获得积分10
13秒前
Arthur完成签到 ,获得积分10
13秒前
我好像是小何完成签到,获得积分20
13秒前
nianxunxi完成签到,获得积分10
14秒前
呃呃发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013