已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:23
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
2秒前
Gun完成签到,获得积分10
3秒前
科研通AI2S应助vivi采纳,获得10
3秒前
小巧怀薇完成签到,获得积分10
6秒前
7秒前
9秒前
StonesKing完成签到,获得积分20
10秒前
ccm应助阿Q采纳,获得30
10秒前
清秀灵薇完成签到,获得积分10
10秒前
siji发布了新的文献求助10
11秒前
13秒前
14秒前
StonesKing发布了新的文献求助10
19秒前
21秒前
Viiigo完成签到,获得积分10
22秒前
小二郎应助siji采纳,获得10
23秒前
羊羊完成签到 ,获得积分10
26秒前
26秒前
丹丹子完成签到 ,获得积分10
27秒前
lynn完成签到,获得积分10
29秒前
29秒前
30秒前
归尘发布了新的文献求助10
33秒前
iorpi完成签到,获得积分10
34秒前
Wen929完成签到 ,获得积分10
35秒前
yuekexing完成签到,获得积分20
36秒前
贱小贱完成签到,获得积分10
38秒前
在水一方应助Sam采纳,获得10
39秒前
wanci应助怕孤单的以云采纳,获得10
42秒前
可爱的函函应助马尔扎哈采纳,获得10
46秒前
Lynny完成签到 ,获得积分0
48秒前
哲000完成签到 ,获得积分10
50秒前
yuekexing发布了新的文献求助10
51秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418147
求助须知:如何正确求助?哪些是违规求助? 4533868
关于积分的说明 14142681
捐赠科研通 4450148
什么是DOI,文献DOI怎么找? 2441102
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079