Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:21
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZQ关闭了ZZQ文献求助
刚刚
科研圣体完成签到,获得积分10
2秒前
张雯雯发布了新的文献求助20
2秒前
2秒前
3秒前
cff发布了新的文献求助10
4秒前
swallow完成签到,获得积分10
4秒前
4秒前
英吉利25发布了新的文献求助10
5秒前
5秒前
小白发布了新的文献求助10
5秒前
Archy发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
汉堡包应助麦子采纳,获得10
10秒前
木偶人发布了新的文献求助10
11秒前
12秒前
高高紫烟发布了新的文献求助10
12秒前
王大炮发布了新的文献求助10
12秒前
12秒前
赘婿应助Sisyphus采纳,获得10
13秒前
kk完成签到,获得积分10
13秒前
14秒前
mbxjsy发布了新的文献求助10
15秒前
隐形曼青应助典雅的俊驰采纳,获得10
15秒前
15秒前
TTT完成签到,获得积分10
15秒前
Biu忒佛完成签到,获得积分10
15秒前
煎饼果子发布了新的文献求助10
16秒前
木偶人完成签到,获得积分10
17秒前
Jasper应助风中飞绿采纳,获得30
17秒前
17秒前
hanzhangjian完成签到,获得积分20
17秒前
嗯哼发布了新的文献求助10
18秒前
在水一方应助科研圣体采纳,获得10
18秒前
LILYpig完成签到 ,获得积分10
19秒前
Owen应助小yang采纳,获得10
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619