Multistage Relation Network With Dual-Metric for Few-Shot Hyperspectral Image Classification

人工智能 模式识别(心理学) 计算机科学 块(置换群论) 特征(语言学) 高光谱成像 关系(数据库) 公制(单位) 嵌入 加权 图像(数学) 上下文图像分类 样品(材料) 特征提取 数据挖掘 数学 哲学 放射科 几何学 经济 医学 色谱法 化学 语言学 运营管理
作者
Jun Zeng,Zhaohui Xue,Ling Zhang,Qiuping Lan,Mengxue Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:23
标识
DOI:10.1109/tgrs.2023.3271424
摘要

Recently, few-shot learning (FSL) has exhibited great potentials in hyperspectral image (HSI) classification due to its promising performance under few training samples. Although existing FSL methods have achieved great success, some limitations can still be witnessed. On the one hand, current methods mainly rely on the single metric to identify, which cannot effectively represent the class distribution with few labeled samples. On the other hand, existing methods usually only use the last deep feature of feature extractor, which may lead to the under-utilization of scarce labeled samples. To overcome the above issues, a novel multistage relation network with dual-metric (DM-MRN) is proposed for few-shot HSI classification. Firstly, a sample recombination strategy is designed to increase the variety of classification tasks in training period. Secondly, an embedding module is employed to extract deep features of the input image patches. Thirdly, we propose two relation modules: image-to-class (I2C) block and image-to-image (I2I) block. I2C block is designed to compute I2C-level relation score between second-order features, and I2I block is conceived to generate I2I-level relation score between first-order features. Finally, DM-MRN is constructed by integrating one embedding module, two I2C blocks, and one I2I block. In addition, an adaptive weighting strategy is designed to fuse the obtained relation scores, and classification can be achieved by assigning each query sample to the class with the highest value of the fused relation score. Extensive experiments carried out on five popular HSI data sets demonstrate that the proposed method outperforms other traditional and advanced models under few training samples in terms of classification accuracy and generalization performance, i.e., the performance improvement in terms of OA is around 0.30%-27.98% under 10 labeled samples per class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助淡定的筮采纳,获得10
刚刚
1秒前
1秒前
1秒前
cmxing完成签到,获得积分10
2秒前
HIMINNN发布了新的文献求助20
2秒前
星辰大海应助好运来采纳,获得10
3秒前
hamlet发布了新的文献求助10
3秒前
斐嘿嘿发布了新的文献求助10
3秒前
机灵火车完成签到,获得积分10
3秒前
科目三应助林间清梦采纳,获得10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
wb发布了新的文献求助10
5秒前
6秒前
zzz发布了新的文献求助10
6秒前
7秒前
浮游应助zxn采纳,获得10
8秒前
8秒前
8秒前
丁博发布了新的文献求助10
8秒前
10秒前
江大橘完成签到,获得积分10
10秒前
无小盐完成签到,获得积分10
11秒前
云玉成烟发布了新的文献求助10
12秒前
顺其自然发布了新的文献求助10
12秒前
nnetth完成签到 ,获得积分10
12秒前
13秒前
yuuu发布了新的文献求助10
13秒前
SR4发布了新的文献求助10
13秒前
zz完成签到,获得积分20
14秒前
丁博完成签到,获得积分20
14秒前
如意元容发布了新的文献求助20
14秒前
林俊杰关注了科研通微信公众号
15秒前
16秒前
稳重的寿司完成签到,获得积分10
17秒前
科研通AI5应助wb采纳,获得10
18秒前
WILD完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4951872
求助须知:如何正确求助?哪些是违规求助? 4214523
关于积分的说明 13108963
捐赠科研通 3996149
什么是DOI,文献DOI怎么找? 2187366
邀请新用户注册赠送积分活动 1202608
关于科研通互助平台的介绍 1115532