过电位
化学
电催化剂
析氧
电化学
塔菲尔方程
钴
无机化学
电解
氧化物
化学工程
非阻塞I/O
镍
氢氧化钴
催化作用
电极
物理化学
电解质
有机化学
工程类
生物化学
作者
Muhammad Kashif Saleem,Niaz Ahmad Niaz,Khaled F. Fawy,Shaimaa A. M. Abdelmohsen,Meznah M. Alanazi,Fayyaz Hussain,Muhammad Naeem Ashiq,Umbreen Rasheed,Yasir Abbas,Muhammad Shuaib Khan
标识
DOI:10.1016/j.jelechem.2023.117503
摘要
Herein, a simple hydrothermal approach has been used to synthesize nickel and cobalt co-doped ferric oxide (Ni-Co-Fe3O4) nanospheres and tested for electrocatalytic oxygen evolution reaction (OER). The different characterization outcomes verify the successful co-doping of Ni and Co into Fe3O4. The as-synthesized Ni-Co-Fe3O4 nanospheres demonstrated better electrochemical properties as compared to its counterparts Fe3O4, Co-Fe3O4, and Ni-Fe3O4. At a define current density of 10 mA cm−2, the Ni-Co-Fe3O4 electrocatalyst obtained a smaller overpotential of 243 mV and the tafel value of about 54.84 mV dec-1. In addition, Ni-Co-Fe3O4 acquired efficient electrochemical stability for 25 h duration reaching current density of 10 mA cm−2 in 1 M potassium hydroxide solution. Furthermore, it is determined that the outstanding electrocatalytic OER activity of the prepared material as a result of its distinct morphology. Analyses using the density functional theory revealed that less hydroxyl ions adhesion energy is very beneficial for the OER of crystalline Ni-Co-Fe3O4 nanospheres. The least adhesive energy for adsorption of hydroxyl ion at the top of the Fe atom in Ni-Co-Fe3O4 further confirmed their outstanding results in improving electrocatalytic OER performance. Our work gives a decent option for future transition metal oxides based electrode nanomaterials for water electrolysis applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI