Nonlinear effects of built environment features on metro ridership: An integrated exploration with machine learning considering spatial heterogeneity

建筑环境 梯度升压 计算机科学 航程(航空) 随机森林 决策树 变量 变量(数学) 运输工程 数据挖掘 工程类 机器学习 数学 土木工程 数学分析 航空航天工程
作者
Mengyang Liu,Yuxuan Liu,Yu Ye
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:95: 104613-104613 被引量:4
标识
DOI:10.1016/j.scs.2023.104613
摘要

This study explored the nonlinear effects of built environment features on metro ridership and proposes an analytical framework that integrates a gradient boosting decision tree with spatial calibration and validation. Station-level boarding and alighting ridership at different times of the day was obtained from smart card records and used as the dependent variable. Nineteen independent variables, including land use, were calculated based on the directional and size-various catchment area defined by shared bike's origin-destination data. This framework, which accounts for spatial heterogeneity demonstrated strong goodness-of-fit and prediction capability, which has been ignored in previous studies. Furthermore, the proposed framework contributed to modeling based on geographical weighted regression and global machine learning models. Local relative importance mapping of built environment variables revealed varying impacts across Shanghai, diverging from the common practice of averaging into a single value in global machine learning models. Additionally, the nonlinear relationship between influencing variables, such as leisure and shopping, demonstrated a positive trend with boarding and alighting ridership in different periods, and spatio-temporal heterogeneity with the effective range and threshold effect. Rather than focusing on increasing development density to boost metro ridership, this study assesses the saturation of station-level built environment to enable more accurate decision-making based on location, station design, station-area planning, and investment priorities in urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武映易完成签到 ,获得积分10
1秒前
zzz发布了新的文献求助10
2秒前
3秒前
大蒜味酸奶钊完成签到 ,获得积分10
3秒前
鱼宇纸完成签到 ,获得积分10
3秒前
LEE完成签到,获得积分20
3秒前
3秒前
Ava应助无限的绿真采纳,获得10
5秒前
小马甲应助xiongdi521采纳,获得10
5秒前
科研通AI5应助陶醉觅夏采纳,获得200
8秒前
憨鬼憨切发布了新的文献求助10
8秒前
8秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
10秒前
11秒前
12秒前
hh应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
Eva完成签到,获得积分10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
清爽老九应助科研通管家采纳,获得20
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
greenPASS666发布了新的文献求助10
13秒前
涂欣桐应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
secbox完成签到,获得积分10
14秒前
刘哈哈发布了新的文献求助30
14秒前
xyzdmmm完成签到,获得积分10
15秒前
15秒前
欢呼冰岚发布了新的文献求助30
16秒前
xiongdi521发布了新的文献求助10
16秒前
honeybee完成签到,获得积分10
18秒前
兔子完成签到,获得积分10
19秒前
汉关发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849