Nonlinear effects of built environment features on metro ridership: An integrated exploration with machine learning considering spatial heterogeneity

建筑环境 梯度升压 计算机科学 航程(航空) 随机森林 决策树 变量 变量(数学) 运输工程 数据挖掘 工程类 机器学习 数学 土木工程 数学分析 航空航天工程
作者
Mengyang Liu,Yuxuan Liu,Yu Ye
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:95: 104613-104613 被引量:4
标识
DOI:10.1016/j.scs.2023.104613
摘要

This study explored the nonlinear effects of built environment features on metro ridership and proposes an analytical framework that integrates a gradient boosting decision tree with spatial calibration and validation. Station-level boarding and alighting ridership at different times of the day was obtained from smart card records and used as the dependent variable. Nineteen independent variables, including land use, were calculated based on the directional and size-various catchment area defined by shared bike's origin-destination data. This framework, which accounts for spatial heterogeneity demonstrated strong goodness-of-fit and prediction capability, which has been ignored in previous studies. Furthermore, the proposed framework contributed to modeling based on geographical weighted regression and global machine learning models. Local relative importance mapping of built environment variables revealed varying impacts across Shanghai, diverging from the common practice of averaging into a single value in global machine learning models. Additionally, the nonlinear relationship between influencing variables, such as leisure and shopping, demonstrated a positive trend with boarding and alighting ridership in different periods, and spatio-temporal heterogeneity with the effective range and threshold effect. Rather than focusing on increasing development density to boost metro ridership, this study assesses the saturation of station-level built environment to enable more accurate decision-making based on location, station design, station-area planning, and investment priorities in urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陳十一应助文件撤销了驳回
刚刚
刚刚
4秒前
拾光完成签到,获得积分10
4秒前
xuanxiu007完成签到,获得积分10
4秒前
梁大海发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
vikoel完成签到,获得积分10
7秒前
7秒前
FOOL完成签到,获得积分10
7秒前
xiaogu完成签到,获得积分10
7秒前
Yang完成签到,获得积分10
7秒前
Maths发布了新的文献求助10
8秒前
含蓄越彬完成签到,获得积分10
8秒前
8秒前
9秒前
hbl完成签到,获得积分10
10秒前
10秒前
高丽娜完成签到,获得积分10
11秒前
嘤嘤怪发布了新的文献求助10
12秒前
TIMF14完成签到,获得积分10
12秒前
12秒前
年轻枕头完成签到,获得积分10
13秒前
大鱼完成签到 ,获得积分10
13秒前
Hou发布了新的文献求助20
13秒前
负责石头完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
沉着且呵呵完成签到,获得积分10
14秒前
机灵水卉完成签到 ,获得积分10
14秒前
明钟达完成签到,获得积分10
15秒前
qian完成签到,获得积分10
15秒前
不想长大完成签到,获得积分10
16秒前
16秒前
笨笨青筠完成签到 ,获得积分10
16秒前
16秒前
MF完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151000
求助须知:如何正确求助?哪些是违规求助? 2802506
关于积分的说明 7848292
捐赠科研通 2459791
什么是DOI,文献DOI怎么找? 1309336
科研通“疑难数据库(出版商)”最低求助积分说明 628894
版权声明 601757